
Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning

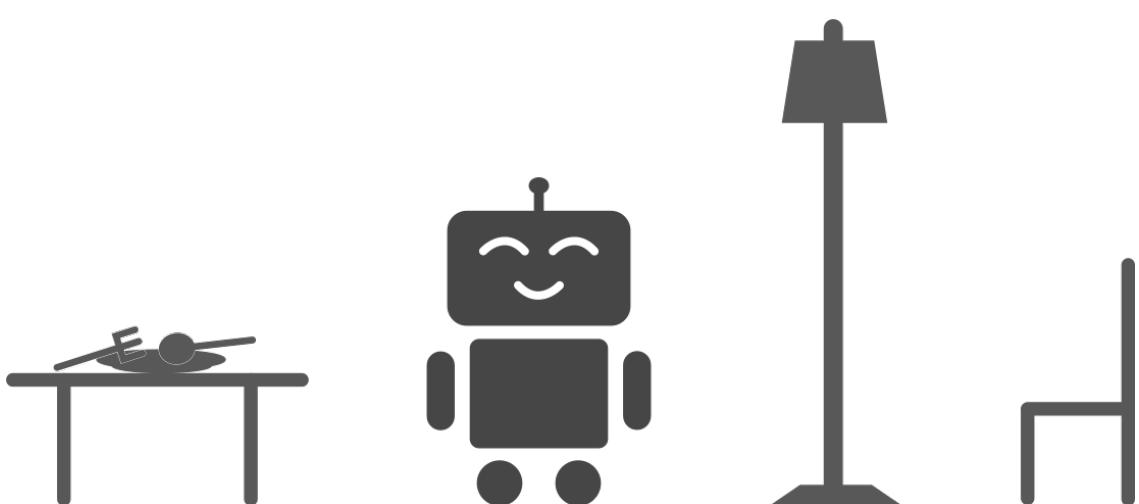
Philippe Hansen-Estruch ¹, Amy Zhang ^{1 2}, Ashvin Nair ¹, Patrick Yin ¹, Sergey Levine ¹

¹ University of California, Berkeley

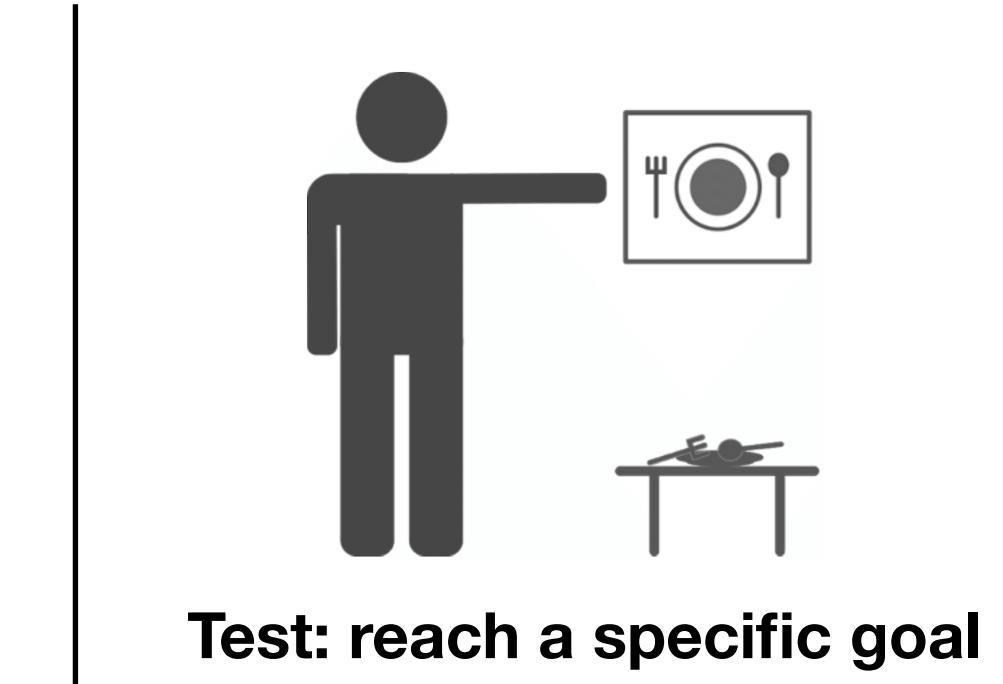
² Meta AI Research

Goal-Conditioned Reinforcement Learning

- Learning generalizable multi-task agents is an important problem
 - Goal-Conditioned Reinforcement Learning (GCRL) $\pi(s, g)$
- A way to represent goals is needed
 - Prior work uses the exact goals



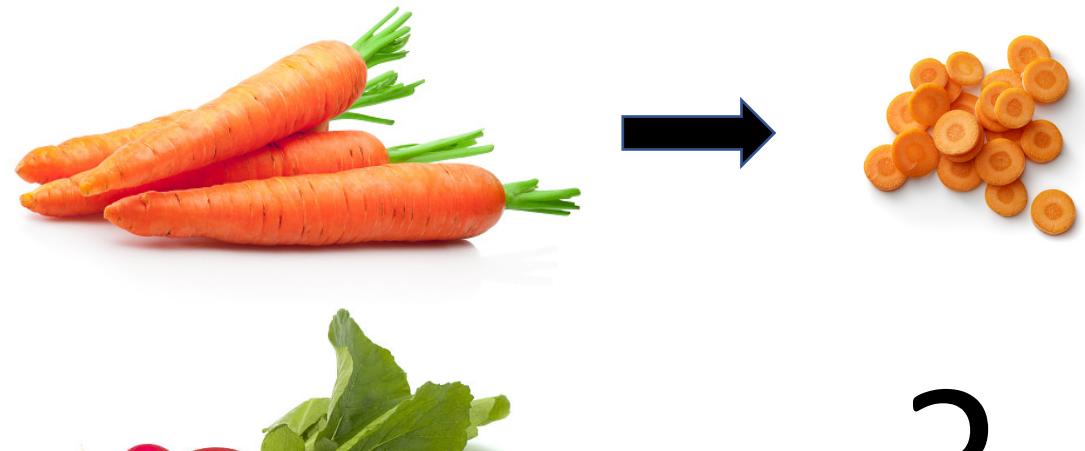
Train: practice reaching various goals



Test: reach a specific goal

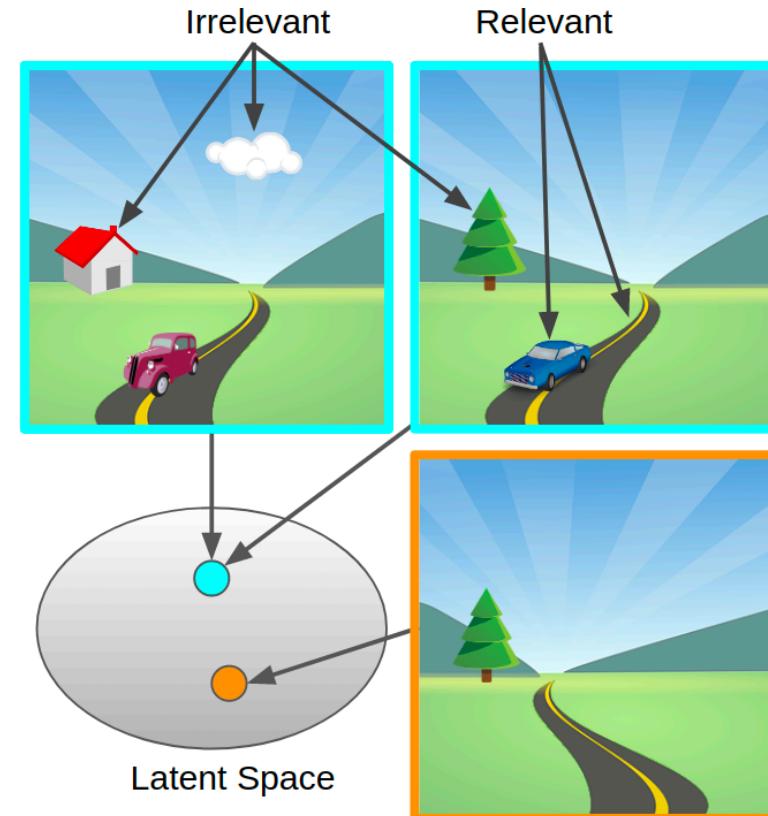
What is the right way to represent goals?

- Conveying a task as a *transformation* in state is a more meaningful goal in RL than a single state
- We want to learn a task representation that captures *functional changes* in the environment
- This representation should retain information changeable by the agent and remain invariant to everything else
- Such a representation is broadly applicable to control



A Functionally Equivariant Task Representation

- A transformation can be viewed as a state (start), goal (finish) pair
- Bisimulation has been shown to learn representations that capture functional invariance across states



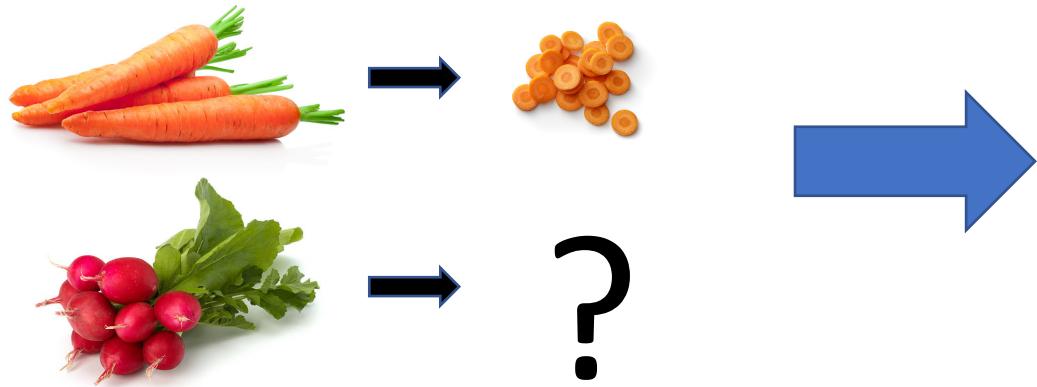
- Bisimulation could construct a task representation that captures functional equivariance across pairs

$$\phi(\text{carrots, carrots}) = \phi(\text{radishes, radishes})$$

How do we use this task representation?

$$\phi(\text{carrots, carrots}) = \phi(\text{radishes, radishes})$$

- We need a single state representation in order to compose new states with known existing tasks



Train:

$$\psi(\text{carrots}) + \phi(\text{carrots, carrots}) = \psi(\text{carrots})$$

Test:

$$\psi(\text{radishes}) + \phi(\text{radishes, radishes}) = \psi(\text{radishes})$$

Method

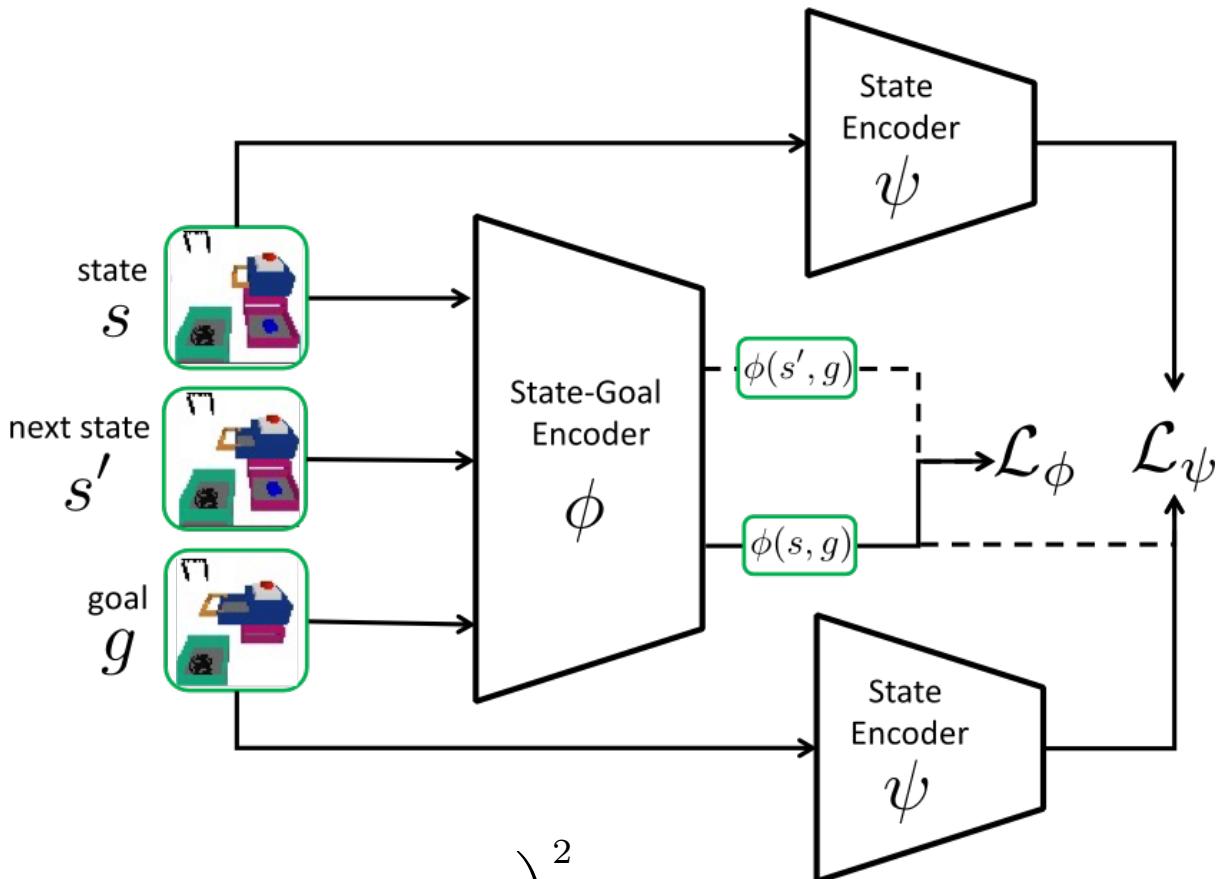
- We propose to learn *two* different representation spaces:

1. A task embedding: a paired state representation that maps functionally equivalent tasks together.

$$\mathcal{L}_\phi = \left(\|\phi(s_i, g_i) - \phi(s_j, g_j)\|_1 - \|r_i - r_j\|_2 - \gamma \|\bar{\phi}(s'_i, g_i) - \bar{\phi}(s'_j, g_j)\|_2 \right)^2$$

2. A single state embedding: a single state representation capable of composing states and task embeddings to find the new goal.

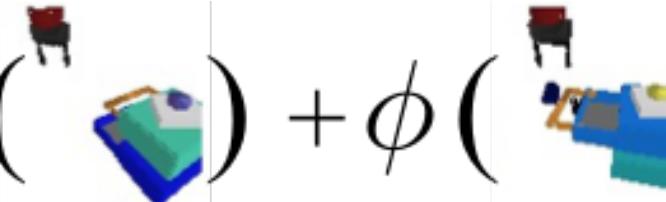
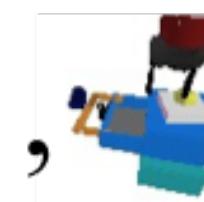
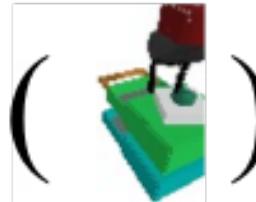
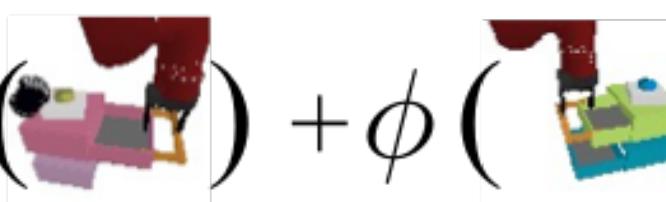
$$\mathcal{L}_\psi = \left((\bar{\phi}(s_i, g_i) - \bar{\phi}(g_i, g_i)) - (\psi(g_i) - \psi(s_i)) \right)^2$$

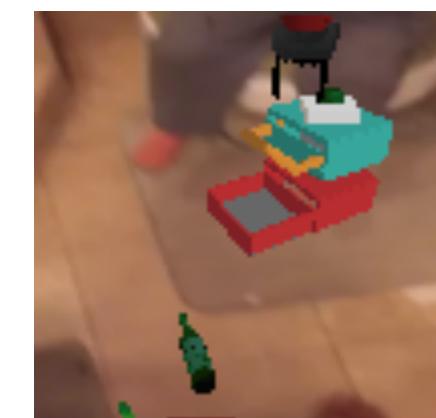


Combining GC Bisimulation with Policy Learning

- Learn the representations while training the goal-conditioned policy in ψ space.
- Using standard Offline RL, Policy trains on $\pi(\psi(s), \phi(s, g))$ and receives $\pi(\psi(s), \phi(s_a, g_a))$ during eval

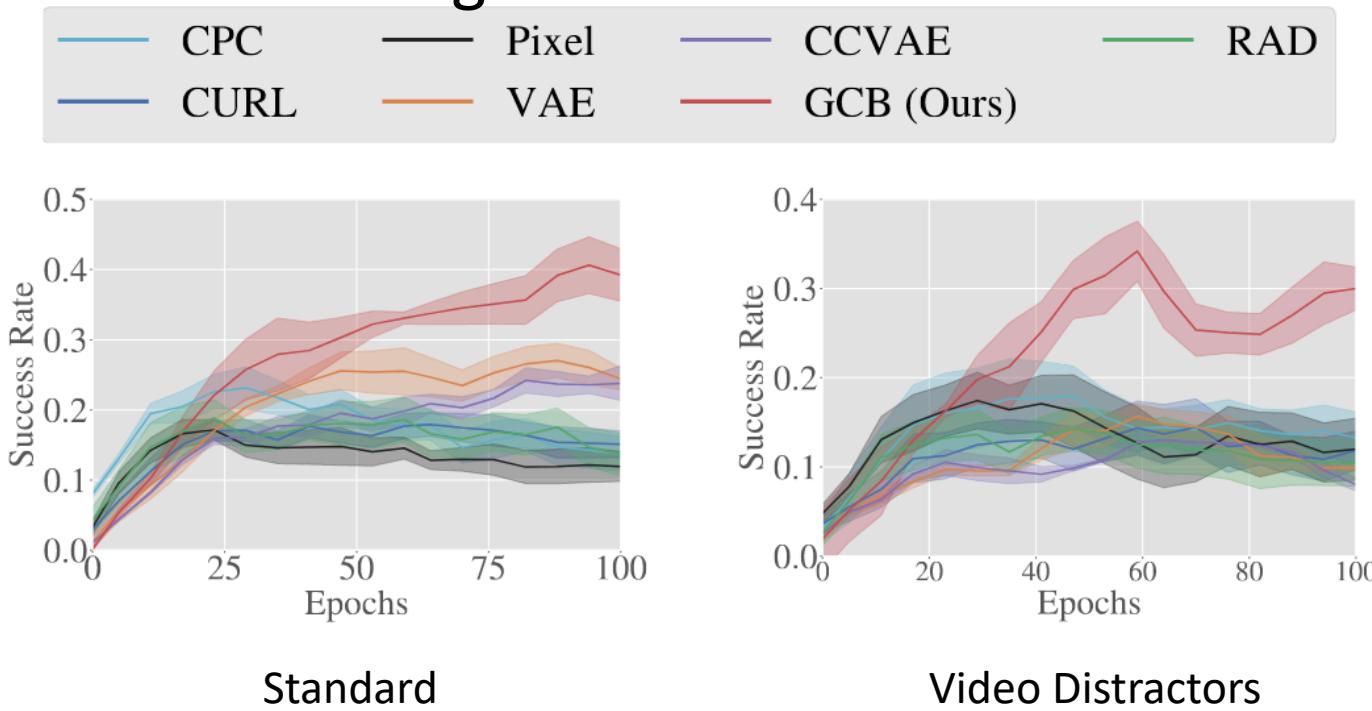
Manipulation Experiments: Analogies Visualized

Start	Analogous State, Goal	Implied Goal (1-NN in Dataset)	Video Distractor
$\psi(\text{[Start Image]}) + \phi(\text{[Analogous State Image]}, \text{[Goal Image]}) = \psi(\text{[Implied Goal Image]})$			
$\psi(\text{[Start Image]}) + \phi(\text{[Analogous State Image]}, \text{[Goal Image]}) = \psi(\text{[Implied Goal Image]})$			

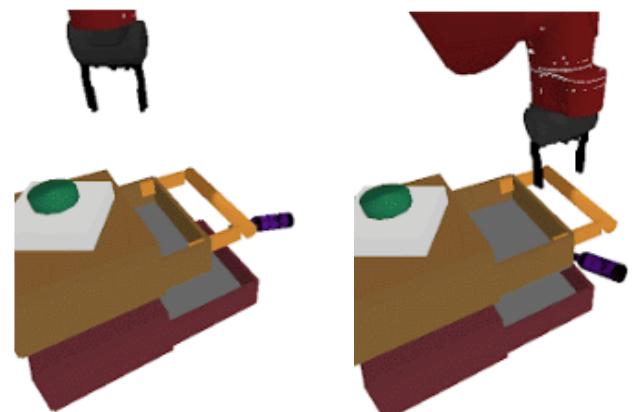


Manipulation Experiments: Using analogies for control

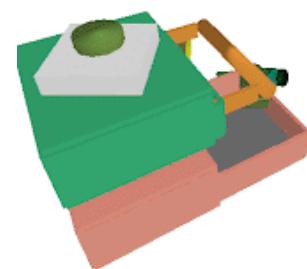
- If the agent is only given an example state-goal pair denoting a desired task, and a new state --- can it infer the new goal?



State-goal pair:

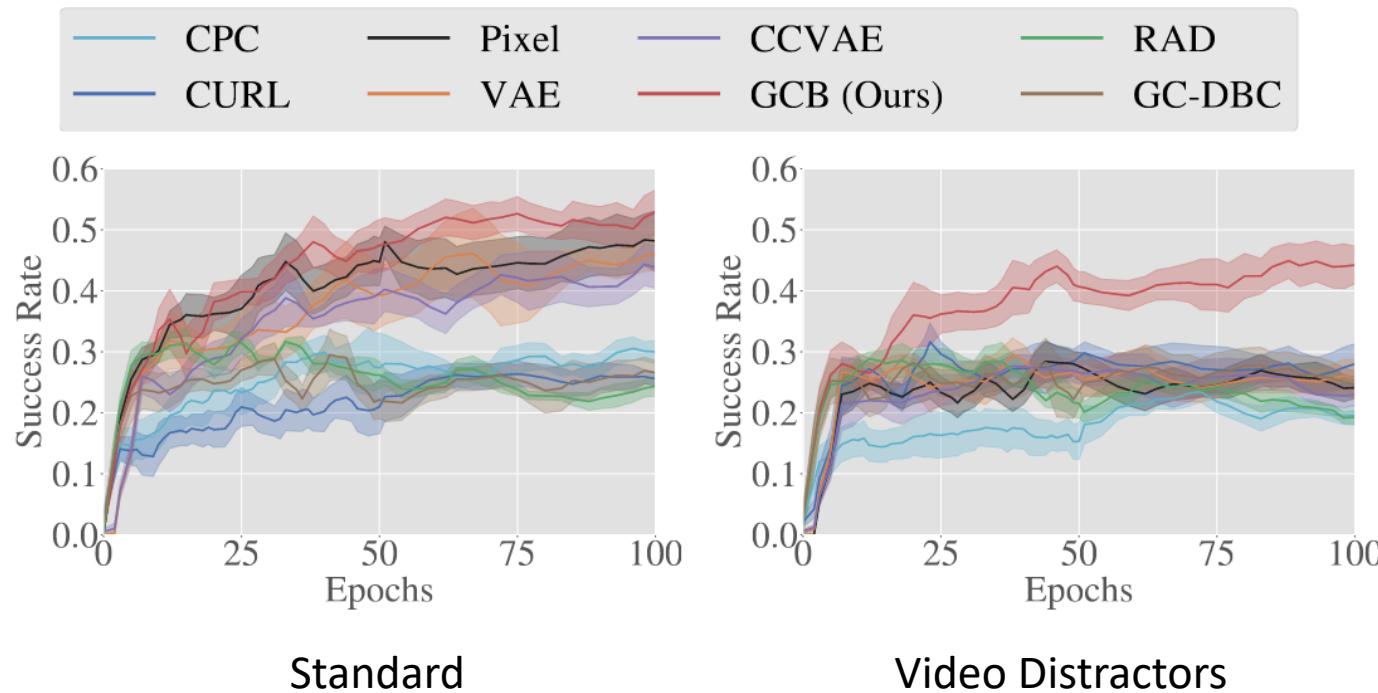


Rollout:

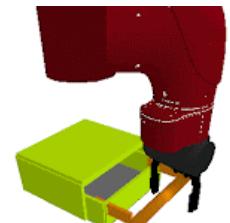


Manipulation Experiments: Evaluating the standard goal-conditioned paradigm

- Can our ψ representation also lead to improved performance in the standard goal-conditioned paradigm?



State-goal pair:



Rollout:

Conclusion

- An ideal representation for GCRL captures *functional equivariance* which can be learned using Bisimulation

$$\phi(\text{carrots, beans}) = \phi(\text{radishes, radish slices})$$

- Coupled with a single state encoder, Goal-Conditioned Bisimulation is able to command goals with analogies

$$\psi(\text{radishes}) + \phi(\text{carrots, beans}) = \psi(\text{radish slices})$$

- Goal-Conditioned Bisimulation is also able to achieve SOTA performance on standard goal conditioned tasks

