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Goal-Conditioned Reinforcement Learning

e Learning generalizable multi-task agents is an important problem
. Goal-Conditioned Reinforcement Learning (GCRL) 7 (s, g)
« A way to represent goals is needed

e Prior work uses the exact goals
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Train: practice reaching various goals Test: reach a specific goal




What is the right way to represent goals?

« Conveying a task as a transformation in
state is a more meaningful goal in RL
than a single state

« We want to learn a task representation
that captures functional changes in the
environment

e This representation should retain
information changeable by the agent
and remain invariant to everything else

« Such a representation is broadly
applicable to control



A Functionally Equivariant Task Representation
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* A transformation can be viewed as M pr
a state (start), goal (finish) pair ' / Y
e Bisimulation has been shown to

learn representations that capture
functional invariance across states
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« Bisimulation could construct a task representation that captures
functional equivariance across pairs
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How do we use this task representation?

P, ) = O (g, )

« We need a single state representation in order to compose new states
with known existing tasks

Train:
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1. A task embedding: a paired state (B
representation that maps gg Ej“—’/
functionally equivalent tasks
together.
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2. Asingle state embedding: a single
state representation capable of
composing states and task
embeddings to find the new goal.
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Combining GC Bisimulation with Policy Learning

e Learn the representations while training the goal-
conditioned policy in w space.

« Using standard Offline RL, Policy trains on 7T(¢(S), Qb(S, g))
and receives (1 (s), (84, gq ) ) during eval



Manipulation Experiments: Analogies
Visualized

Start Analogous State, Goal Implied Goal (1-NN in Dataset) Video Distractor
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Manipulation Experiments:
Using analogies for control

e If the agent is only given an example
state-goal pair denoting a desired
task, and a new state --- can it infer H
the new goal? o
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Manipulation Experiments: Evaluating the
standard goal-conditioned paradigm

« Can our w representation also lead to improved performance in the
standard goal-conditioned paradigm?
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Conclusion

e An ideal representation for GCRL captures functional equivariance
which can be learned using Bisimulation

P, #) = O (g6, )

« Coupled with a single state encoder, Goal-Conditioned Bisimulation is
able to command goals with analogies

0 () + () =15 ()

e Goal-Conditioned Bisimulation is also able to achieve SOTA
performance on standard goal conditioned tasks

"

R
A ® &

™




