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Matrix Completion

Standard assumption: underlying matrix has low rank
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Inductive Matrix Completion
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[Jain & Dhillon ’13]
[Xu, Jin & Zhou ’13]

Matrix Completion in reduced dimensions (dim 𝑀 < dim 𝑋)
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Example: Gene-disease prediction

[Natarajan & Dhillon ’14]
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Goal: complete unknown associations
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Our contributions

➢ No bad local minima guarantee

➢ Provable rank estimation scheme

➢ GNIMC: fast and provable Gauss-Newton based algorithm
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No Bad Local Minima Guarantee
In general, Inductive Matrix Completion is nonconvex

Underlying technique: creating a bridge to Matrix Sensing 

by proving Restricted Isometry Property (RIP)

Theorem: (informal) under certain conditions, all critical 
points are either global minima or strict saddle points
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Novelty:

• holds with few observations

• no regularization required
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Rank estimation scheme
To complete the matrix, many algorithms (e.g. gradient descent) require its rank as input

Our rank estimator is based on the spectral gaps between pairs of consecutive singular values 

Theorem: (informal) Let 𝑋 be an 𝑛 × 𝑚 matrix, whose row and 

column subspaces are known. Then our estimator recovers rank(𝑋) 

given 𝒪(log 𝑛 + log 𝑚 ) randomly observed entries

• First rank estimation guarantee

• The rank of 𝑋 may be either exact or approximate

• The observed entries may be corrupted by noise
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GNIMC algorithm
GNIMC: Gauss Newton Inductive Matrix Completion

Based on [Zilber & Nadler, GNMR, SIMODS (2022), to appear]

Theorem: (informal) Let 𝑋 be an 𝑛 × 𝑚 matrix, whose row and 

column subspaces are known. Suppose we randomly observe

𝒪(log 𝑛 + log 𝑚 ) of its entries.

Then starting from a sufficiently accurate initialization, GNIMC 

successfully recovers 𝑋. Moreover, in the absence of noise, 

GNIMC recovers 𝑋 at a quadratic rate.

Bonus: no hyperparameter tuning required!

20000 × 1000 matrix with 0.005%− 0.007%
observed entries
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2-15 x faster than 
other methods



Thank you

Python + Matlab implementations of GNIMC

as well as other IMC algorithms are available at

github.com/pizilber/IMC
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