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TD learning fits 
non-smooth 
components of the 
value function first.



Smoothness and eigendecompositions of Pπ

Recall: eigendecomposition of Pπ gives 
notion of smoothness w.r.t. 
transition dynamics.

Smooth functions ≈ eigenvectors 
corresponding to largest (positive) 
eigenvalues of Pπ

Non-smooth functions ≈ negative 
eigenvalues.



Dynamics of TD learning

TD methods learn about nearby 
rewards first, only pick up 
“global” structure of the value 
function later.

Rewards usually less smooth 
than the true value function.
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Dynamics of TD learning
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Continuous-time approximation of 
value function evolution :

Implies that value function error 
depends on eigendecomposition of Pπ : 
Vt  fits smooth components last.



Early prediction 
targets determine 
inductive biases of 
deep neural 
networks.



Critical periods

The early learning period 
is crucial for neural 
networks to incorporate 
good inductive biases for 
generalization. 

Fitting a non-smooth 
function early in training 
can result in a 
memorization bias.



Early targets influence generalization error

Networks pre-trained to fit 
high-frequency target 
functions go on to obtain 
greater generalization error 
when fine-tuned on a value 
function and evaluated on an 
interpolation task than those 
trained from scratch on the 
value function.



Fitting non-smooth TD 
targets early in training 
hurts generalization in 
value-based deep RL 
agents.



TD targets and deep RL

Temporal difference learning is hard 
for neural networks because they 
initially have to fit functions like this 

… and later on have to adapt to fit 
functions like this 



Measuring memorization

Interference: the extent to which an update on one state influences 
the network’s output on other states. If updating output for a state x 
does not change predictions for other states, then no generalization.

Update matrices: row i measures change in value output over all states after updating network to minimize loss 
at state xi. Diagonal matrix implies no generalization; rank one matrix implies trivial generalization between 
inputs.



Memorization in value-based deep RL

Deep RL agents exhibit 
decreasing interference 
over the course of training.

Suggests that networks are 
learning to memorize value 
function.

Update matrices: row i measures change in value output 
over all states after updating network to minimize loss at 
state xi. Diagonal matrix implies no generalization; rank 
one matrix implies trivial generalization between inputs.



Value- vs policy-based RL

Value-based RL leads to weaker interference than policy gradient methods.



Distillation using a 
freshly initialized 
network improves 
generalization



Distillation

Distillation improves 
robustness to 
perturbation and 
increases consistency 
on interpolations of 
the training data.



Policy Distillation

Policy distillation of a “fresh” network to mimic the behaviour of an 
actor-critic agent improves generalization to new environments.



Thanks!


