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Nonconvex Finite-sum Optimization

Optimization problem:

1 n
min F(x) = — Zfi(x), fi can be nonconvex.
n

d
x€eR i1

Very common in machine learning!

NP-hard to solve in general (Hillar and
Lim, 2013)

input layer
hidden layer 1 hidden layer 2
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First-Order Stationary Points

We aim to find a first-order stationary point x, where
VF(x) =0.
Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!
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First-Order Stationary Points
We aim to find a first-order stationary point x, where
VF(x) =0.
Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!

Low-rank matrix factorization (Ge, Lee, Training deep linear networks (Hardt and
and Ma, 2016) Ma, 2016; Zou, Long, and Gu, 2020)
fii(X) = (M = [XX];5)? fi(Ar,... AL)

= llyi = (T+ A1) (IT+ Ap)xilf3
Goal: To find an e-stationary point x, where |[VF(x)|| < e
Complexity measure: Number of calls to each f;, obtain (Vfi, V2f;,...)
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High-Order Regularization Method (Birgin et al.,

Starting from xg, at round t, given current iterate x,

» Construct the p-th order Taylor approximation at x;, that is

P

F(x;+h) ~ F(x;) + m}(h), m}(h) =) (V'F(x;),h®) +

i=1
» Compute h; as the approximate minimizer of m? (h), where

h; ~ argminm? (h).
heRd

» Update iterate x;11 = x¢ + hy

2017)

M,
L

> Special cases: gradient descent (p = 1), cubic regularization of Newton method

(Nesterov and Polyak, 2006) (p = 2)
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Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a e-stationary point within
O(ne~®P+1)/p)

number of oracle calls.
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Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a e-stationary point within
O(ne~®P+1)/p)

number of oracle calls.

Can we design an algorithm whose p-th order oracle complexity has a sublinear
dependence on n, and the best dependence on €?
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Stochastic p-th Order Method: Derivative Estimators

We construct semi-stochastic estimations J,Ei) ~ ViF(x),i=1,---,p, then let
- (9) ‘ M;
h; = argminm¥ (h) = E J h®) + h|P+?
heRd t i:1< t > (p-i—l)'H H

Then update

Xi+1 = X¢ + hy

8/13



Stochastic p-th Order Method: Derivative Estimators

We construct semi-stochastic estimations Jgi) ~ ViF(x),i=1,---,p, then let
10 poi My
h; = argminm} (h) = Y (J;"”, h®) + ———|/h||P*!
heRd ' ; t (p+ 1)t

Then update
Xi41 = X¢ + hy
How to construct estimated tensor JEZ)?

» One-point Taylor expansion estimator (OP-TE)
> Inspired by variance-reduced gradient/Hessian (Johnson and Zhang, 2013; Zhou, Xu, and
Gu, 2018)
» Two-point Taylor expansion estimator (TP-TE)
> Inspired by recursive variance-reduced gradient/Hessian (Nguyen et al., 2017; Fang et al.,
2018; Shen et al., 2019)
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Theoretical Results

Theorem (p-th order oracle complexity for OP-TE and TP-TE)

With specific parameter choices, OP-TE will find an e-stationary point within

O (nBr=1/Gp)¢=(P+1)/p)

number of stochastic p-th order oracle calls, TP-TE will find an e-stationary point within

O(nr=—1/Cp)=(+1)/p)

number of stochastic p-th order oracle calls. O(-) hides logarithmic terms and polynomial
term of p.

» Dimension-free bounds!
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Complexity Comparison

Algorithm p-th order oracle complexity
HR
o(—2——
(Birgin et al., 2017) (75)
OP-TE O(n(;ipfl)/(Sp))
(This work) elP+)/p
TP-TE O(n(Q[)fl)/<2p)>
(This work) elPt)/p
Lower bound n(p—1)/(2p)
(Emmenegger, Kyng, and Zehmakan, 2021) ( elp+1)/p )

» Improves HR by a n!/(??) factor!
» Still \/n away from lower bound ...
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