Dimension-free Complexity Bounds for High-order Nonconvex Finite-sum Optimization

Dongruo Zhou ¹ Quanquan Gu ¹

¹Department of Computer Science, UCLA

July 18, 2022

Nonconvex Finite-sum Optimization

Optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), \ f_i \ \mathsf{can} \ \mathsf{be} \ \mathsf{nonconvex}.$$

Very common in machine learning!

NP-hard to solve in general (Hillar and Lim, 2013)

First-Order Stationary Points

We aim to find a first-order stationary point \mathbf{x} , where

$$\nabla F(\mathbf{x}) = \mathbf{0}.$$

Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!

First-Order Stationary Points

We aim to find a first-order stationary point x, where

$$\nabla F(\mathbf{x}) = \mathbf{0}.$$

Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!

Low-rank matrix factorization (Ge, Lee, and Ma, 2016)

$$f_{i,j}(\mathbf{X}) = (\mathbf{M}_{i,j} - [\mathbf{X}\mathbf{X}^{\top}]_{i,j})^2$$

$$f_i(\mathbf{A}_1, \dots, \mathbf{A}_L)$$

$$= \|\mathbf{y}_i - (\mathbf{I} + \mathbf{A}_1) \cdots (\mathbf{I} + \mathbf{A}_L) \mathbf{x}_i\|_2^2$$

Goal: To find an ϵ -stationary point \mathbf{x} , where $\|\nabla F(\mathbf{x})\| \le \epsilon$ **Complexity measure:** Number of calls to each f_i , obtain $(\nabla f_i, \nabla^2 f_i, \dots)$

High-Order Regularization Method (Birgin et al., 2017)

Starting from x_0 , at round t, given current iterate x_t ,

 \triangleright Construct the p-th order Taylor approximation at \mathbf{x}_t , that is

$$F(\mathbf{x}_t + \mathbf{h}) \approx F(\mathbf{x}_t) + m_t^p(\mathbf{h}), \ m_t^p(\mathbf{h}) = \sum_{i=1}^p \langle \nabla^i F(\mathbf{x}_t), \mathbf{h}^{\otimes i} \rangle + \frac{M_t}{(p+1)!} ||\mathbf{h}||^{p+1}.$$

lacktriangle Compute \mathbf{h}_t as the approximate minimizer of $m_t^p(\mathbf{h})$, where

$$\mathbf{h}_t pprox \operatorname*{argmin}_{\mathbf{h} \in \mathbb{R}^d} m_t^p(\mathbf{h}).$$

- ▶ Update iterate $\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{h}_t$
- Special cases: gradient descent (p=1), cubic regularization of Newton method (Nesterov and Polyak, 2006) (p=2)

Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a $\epsilon\text{-stationary}$ point within

$$O(n\epsilon^{-(p+1)/p})$$

number of oracle calls.

Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a $\epsilon\text{-stationary}$ point within

$$O(n\epsilon^{-(p+1)/p})$$

number of oracle calls.

Can we design an algorithm whose p-th order oracle complexity has a sublinear dependence on n, and the best dependence on ϵ ?

Stochastic *p*-th Order Method: Derivative Estimators

We construct semi-stochastic estimations $\mathbf{J}_t^{(i)} \approx \nabla^i F(\mathbf{x}_t), i=1,\cdots,p$, then let

$$\mathbf{h}_t = \operatorname*{argmin}_{\mathbf{h} \in \mathbb{R}^d} \widehat{m}_t^p(\mathbf{h}) = \sum_{i=1}^p \langle \mathbf{J}_t^{(i)}, \mathbf{h}^{\otimes i} \rangle + \frac{M_t}{(p+1)!} \|\mathbf{h}\|^{p+1}$$

Then update

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{h}_t$$

Stochastic *p*-th Order Method: Derivative Estimators

We construct semi-stochastic estimations $\mathbf{J}_t^{(i)} \approx \nabla^i F(\mathbf{x}_t), i=1,\cdots,p$, then let

$$\mathbf{h}_t = \operatorname*{argmin}_{\mathbf{h} \in \mathbb{R}^d} \widehat{m}_t^p(\mathbf{h}) = \sum_{i=1}^p \langle \mathbf{J}_t^{(i)}, \mathbf{h}^{\otimes i} \rangle + \frac{M_t}{(p+1)!} ||\mathbf{h}||^{p+1}$$

Then update

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{h}_t$$

How to construct estimated tensor $\mathbf{J}_t^{(i)}$?

- One-point Taylor expansion estimator (OP-TE)
 - ▶ Inspired by variance-reduced gradient/Hessian (Johnson and Zhang, 2013; Zhou, Xu, and Gu, 2018)
- ► Two-point Taylor expansion estimator (TP-TE)
 - Inspired by recursive variance-reduced gradient/Hessian (Nguyen et al., 2017; Fang et al., 2018; Shen et al., 2019)

Theoretical Results

Theorem (p-th order oracle complexity for OP-TE and TP-TE)

With specific parameter choices, OP-TE will find an ϵ -stationary point within

$$\widetilde{O}(n^{(3p-1)/(3p)}\epsilon^{-(p+1)/p})$$

number of stochastic p-th order oracle calls, TP-TE will find an ϵ -stationary point within

$$\widetilde{O}(n^{(2p-1)/(2p)}\epsilon^{-(p+1)/p})$$

number of stochastic p-th order oracle calls. $O(\cdot)$ hides logarithmic terms and polynomial term of p.

Dimension-free bounds!

Complexity Comparison

Algorithm	$p ext{-th order oracle complexity}$
HR (Birgin et al., 2017)	$Oig(rac{n}{\epsilon^{(p+1)/p}}ig)$
OP-TE (This work)	$O(\frac{n^{(3p-1)/(3p)}}{\epsilon^{(p+1)/p}})$
TP-TE	$O(\frac{n^{(2p-1)/(2p)}}{\epsilon^{(p+1)/p}})$
(This work) Lower bound (Emmenegger, Kyng, and Zehmakan, 2021)	$\Omega\left(\frac{n^{(p-1)/(2p)}}{\epsilon^{(p+1)/p}}\right)$
(Ellimenegger, Ryng, and Zellmakan, 2021)	

- ▶ Improves HR by a $n^{1/(2p)}$ factor!
- ightharpoonup Still \sqrt{n} away from lower bound ...

Reference I

- Birgin, Ernesto G et al. (2017). "Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models". In: *Mathematical Programming* 163.1-2, pp. 359–368.
- Emmenegger, Nicolas, Rasmus Kyng, and Ahad N Zehmakan (2021). "On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization". In: arXiv preprint arXiv:2103.05138.
- Fang, Cong et al. (2018). "SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator". In: Advances in Neural Information Processing Systems, pp. 686–696.
- Ge, Rong, Jason D Lee, and Tengyu Ma (2016). "Matrix completion has no spurious local minimum". In: Advances in Neural Information Processing Systems, pp. 2973–2981.
- Hardt, Moritz and Tengyu Ma (2016). "Identity matters in deep learning". In: arXiv preprint arXiv:1611.04231.
- Hillar, Christopher J and Lek-Heng Lim (2013). "Most tensor problems are NP-hard". In: *Journal of the ACM (JACM)* 60.6, p. 45.
- Johnson, Rie and Tong Zhang (2013). "Accelerating stochastic gradient descent using predictive variance reduction". In: Advances in neural information processing systems, pp. 315–323.
- Nesterov, Yurii and B. T. Polyak (2006). "Cubic regularization of Newton method and its global performance". In: *Mathematical Programming* 108.1, pp. 177–205.
- Nguyen, Lam M et al. (2017). "SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient". In: *International Conference on Machine Learning*, pp. 2613–2621.
- Shen, Zebang et al. (2019). "A Stochastic Trust Region Method for Non-convex Minimization". In: arXiv preprint arXiv:1903.01540.

Reference II

- Zhou, Dongruo, Pan Xu, and Quanquan Gu (2018). "Stochastic Variance-Reduced Cubic Regularized Newton Methods". In: *Proceedings of the 35th International Conference on Machine Learning*. PMLR, pp. 5990–5999.
- Zou, Difan, Philip M. Long, and Quanquan Gu (2020). "On the Global Convergence of Training Deep Linear ResNets".

 In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=
 HJxEhBEKDH.