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Nonconvex Finite-sum Optimization

Optimization problem:

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi(x), fi can be nonconvex.

Very common in machine learning!

NP-hard to solve in general (Hillar and
Lim, 2013)
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First-Order Stationary Points

We aim to find a first-order stationary point x, where

∇F (x) = 0.

Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!
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First-Order Stationary Points

We aim to find a first-order stationary point x, where

∇F (x) = 0.

Why stationary points? In some cases, stationary points are global minima!

For instance, gradient dominant functions!

Low-rank matrix factorization (Ge, Lee,
and Ma, 2016)

fi,j(X) = (Mi,j − [XX⊤]i,j)
2

Training deep linear networks (Hardt and
Ma, 2016; Zou, Long, and Gu, 2020)

fi(A1, . . . ,AL)

= ∥yi − (I+A1) · · · (I+AL)xi∥22
Goal: To find an ϵ-stationary point x, where ∥∇F (x)∥ ≤ ϵ
Complexity measure: Number of calls to each fi, obtain (∇fi,∇2fi, . . . )
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High-Order Regularization Method (Birgin et al., 2017)

Starting from x0, at round t, given current iterate xt,

▶ Construct the p-th order Taylor approximation at xt, that is

F (xt + h) ≈ F (xt) +mp
t (h), mp

t (h) =

p∑
i=1

⟨∇iF (xt),h
⊗i⟩+ Mt

(p+ 1)!
∥h∥p+1.

▶ Compute ht as the approximate minimizer of mp
t (h), where

ht ≈ argmin
h∈Rd

mp
t (h).

▶ Update iterate xt+1 = xt + ht

▶ Special cases: gradient descent (p = 1), cubic regularization of Newton method
(Nesterov and Polyak, 2006) (p = 2)
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Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a ϵ-stationary point within

O(nϵ−(p+1)/p)

number of oracle calls.
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Convergence of p-th order regularization method

Theorem (Birgin et al. 2017)

p-th order regularization method converges to a ϵ-stationary point within

O(nϵ−(p+1)/p)

number of oracle calls.

Can we design an algorithm whose p-th order oracle complexity has a sublinear
dependence on n, and the best dependence on ϵ?
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Stochastic p-th Order Method: Derivative Estimators

We construct semi-stochastic estimations J
(i)
t ≈ ∇iF (xt), i = 1, · · · , p, then let

ht = argmin
h∈Rd

m̂p
t (h) =

p∑
i=1

⟨J(i)
t ,h⊗i⟩+ Mt

(p+ 1)!
∥h∥p+1

Then update

xt+1 = xt + ht
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Stochastic p-th Order Method: Derivative Estimators

We construct semi-stochastic estimations J
(i)
t ≈ ∇iF (xt), i = 1, · · · , p, then let

ht = argmin
h∈Rd

m̂p
t (h) =

p∑
i=1

⟨J(i)
t ,h⊗i⟩+ Mt

(p+ 1)!
∥h∥p+1

Then update

xt+1 = xt + ht

How to construct estimated tensor J
(i)
t ?

▶ One-point Taylor expansion estimator (OP-TE)
▶ Inspired by variance-reduced gradient/Hessian (Johnson and Zhang, 2013; Zhou, Xu, and

Gu, 2018)
▶ Two-point Taylor expansion estimator (TP-TE)

▶ Inspired by recursive variance-reduced gradient/Hessian (Nguyen et al., 2017; Fang et al.,
2018; Shen et al., 2019)
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Theoretical Results

Theorem (p-th order oracle complexity for OP-TE and TP-TE)

With specific parameter choices, OP-TE will find an ϵ-stationary point within

Õ(n(3p−1)/(3p)ϵ−(p+1)/p)

number of stochastic p-th order oracle calls, TP-TE will find an ϵ-stationary point within

Õ(n(2p−1)/(2p)ϵ−(p+1)/p)

number of stochastic p-th order oracle calls. Õ(·) hides logarithmic terms and polynomial
term of p.

▶ Dimension-free bounds!
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Complexity Comparison

Algorithm p-th order oracle complexity

HR
O
(

n
ϵ(p+1)/p

)
(Birgin et al., 2017)

OP-TE
O
(
n(3p−1)/(3p)

ϵ(p+1)/p

)
(This work)

TP-TE
O
(
n(2p−1)/(2p)

ϵ(p+1)/p

)
(This work)

Lower bound
Ω
(
n(p−1)/(2p)

ϵ(p+1)/p

)
(Emmenegger, Kyng, and Zehmakan, 2021)

▶ Improves HR by a n1/(2p) factor!

▶ Still
√
n away from lower bound ...
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