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Adding an explicit memory to language models

Output tokens

e Increasing the model size has two effects: T
o Increase memorisation of training data
o Increase generalisation performance “~_ Nearest
Neural neighbors
. . . network
e (Can we increase memorisation without the T
extra parameters ?
o External memory mechanism Key-value
o Associated to a trainable neural network token store
e Combine a parametric model (neural network) Input tokens /(Qt;ery

with a non-parametric model (data store
providing nearest neighbours)
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RETRO: adding a very large database of tokens

Previous work on retrieval have focused on retrieving from Wikipedia (3B tokens)
We retrieve from our entire training set: 2T tokens (700x more)

Three major ingredients:

a. Frozen dense retriever (pooled BERT on small sequences)

b. Approx k-nearest neighbors run as a preprocessing step (quantification
and tree search)

c. DB elementis a chunk and not a token: 30B keys
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Retrieving at chunk level, predicting at sequence level

Neighbour 3
Neighbour 2
Retrieval database Neighbour 1 Transformer

Emma Raducanu is the reigning US Encodar

Open champion, and the first British

2 trillion words:

Web, books, news, Wikipedia,
GitHub

woman to win a Grand Slam singles
title...

Output sequence

by Emma Raducanu. She
—y defeated Leylah
Fernandex 6-4, 6-3 in the
final. She is the first British
woman...

Input sequence

The 2021 Women's US
Open was won
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Condition new chunk generation on previous chunk neighbours
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A model made for sampling — r--------5 o™
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A model made for sampling — r--------5 T
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A model made for sampling C T~ Rebour
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A model made for sampling T ey
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RETRO improves strongly with database size
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RETRO improves with additional retrieved neighbours

C4 Eval bits-per-byte
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Language modelling: The Pile

Relative bits-per-byte improvement over our 7B baseline without retrieval
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Gao et al. 2020. The Pile: An 800GB Dataset of Diverse Text for Language Modeling
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Conclusion

e RETRO is a general architecture, that is fully autoregressive and enables large scale
retrieval

e Adding a 2T token database yields a performance improvement that's constant with
model size:
o  Similar performance to models with 10x more parameters on the Pile

e Consistent performance across benchmarks
o Retrieval does exploit train-test leakage more than standard language models
o But performance also improves on held-out tokens

e Future work on few-shot evaluation
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