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Multi-Agent RL / Games with Imperfect Information

Imperfect Information:  
Players can only observe partial information about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019], 

Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], …

Image source (right): 

No-Press Diplomacy from Scratch, Bakhtin et al. 2021.



Imperfect-Information Extensive-Form Games (IIEFGs)

A commonly used formulation of games involving

• Multi-agent

• Sequential plays

• Imperfect information

Image source: Superhuman AI for Multiplayer Poker, 

Brown & Sandholm 2019.

[Kuhn 1953]

IIEFGs can be formulated as Partially Observable Markov Games (POMGs) 

with tree structure + perfect recall [Kovarik et al. 2019, Kozuno et al. 2021]



Two-Player Zero-Sum IIEFGs

Game value (expected cumulative reward):





• : max-player

• : min-player

• : information sets (observations) for the two players

Vμ,ν := 𝔼[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh( ⋅ |xh), bh ∼ νh( ⋅ |yh)]
μ
ν
(xh, yh) = (x(sh), y(sh))

Goal: Approximate Nash Equilibrium (controlling both players)

 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
Vμ,ν† ≤ ε

Goal’: No-regret (only control max player)


 Reg(T ) := max
μ†

T

∑
t=1

Vμ†,νt − Vμt,νt = o(T )

Online-to-batch conversion (e.g. [Zinkevich et al. 2007])

Play 2 no-regret algs against each other => Average policies are approximate Nash



Existing approaches

Full feedback / known game:

• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]

• First-order optimization / online mirror descent (OMD) over sequence-form strategy space 

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]

• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin 

2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing):

• Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]

• Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …]

• Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]


• Learns an -Nash within  episodes (current best)

• : number of information sets; : number of actions

• Lower bound is , still  factor away

ε Õ ((X2A + Y2B)/ε2)
X, Y A, B

Ω((XA + YB)/ε2) max{X, Y}

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs 

from bandit feedback with near-optimal sample complexity? 



Main Result

Theorem:

We design two new algorithms, Balanced OMD and Balanced CFR; both 
algorithms can learn an -Nash within  episodes of play.ε Õ ((XA + YB)/ε2)



Balanced OMD

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy , construct loss estimator 

                       .


2. Update policy 
                          , 

(with efficient implementation)


μt

ℓ̃ t
h(xh, ah) :=

1{(xt
h, at

h) = (xh, ah)} ⋅ (1 − rt
h)

μt
1:h(xh, ah) + γμ⋆,h

1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩ + Dbal(μ∥μt)

Main new ingredient: Balanced dilated KL distance


,


= Dilated KL [Hoda et al. 2010] + reweighting by Balanced exploration policies





(extension of [Farina et al. 2020c]).

Dbal(μ∥ν) := ∑
h,xh,ah

μ1:h(xh, ah)
μ⋆,h

1:h (xh, ah)
log

μh(ah |xh)
νh(ah |xh)

μ⋆,h
1:h (xh, ah) =

h

∏
h′￼=1

|Ch(xh′￼, ah′￼) |
|Ch(xh′￼) |

Number of descendants 
of  within h-th layer(xh′￼, ah′￼)
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Theorem: Balanced OMD achieves regret bound




and learns -Nash within  episodes of self-play.
Reg(T ) ≤ Õ ( H3XAT)

ε Õ (H3(XA + YB)/ε2)



Balanced OMD

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy , construct loss estimator 

                       .


2. Update policy 
                          , 

(with efficient implementation)


μt

ℓ̃ t
h(xh, ah) :=

1{(xt
h, at

h) = (xh, ah)} ⋅ (1 − rt
h)

μt
1:h(xh, ah) + γμ⋆,h

1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩ + Dbal(μ∥μt)

Theorem: Balanced OMD achieves regret bound




and learns -Nash within  episodes of self-play.
Reg(T ) ≤ Õ ( H3XAT)

ε Õ (H3(XA + YB)/ε2)

Main technical highlight:

“Balancing effect” introduced by  (adapts to geometry of policy space)

==> better stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]) , 


by bounding a certain log-partition function via 2nd order Taylor expansion 

Dbal



Balanced CFR

Algorithm (Balanced CFR, max-player):

1. Play H episodes with policy , observe trajectory 

                              

2. Construct counterfactual loss estimator 

               .


3. Update policy at each information set via Hedge 
                . 

(can also use Regret Matching [Zinkevich et al. 2007].)

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′￼=h

(1 − rt,(h)
h′￼ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, ah)L̃t

h(xh, ah))

Mixture of  and μ⋆,h μt

Algorithm = 

MCCFR framework [Lanctot et al. 2009, Farina et al. 2020c] 

+ sampling by mixing importance weighting (using ) and Monte Carlo (using ) 

+ “adaptive” learning rate  at each infoset

μ⋆,h μt

μ⋆,h
1:h (xh, ah)
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               .
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                . 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μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′￼=h

(1 − rt,(h)
h′￼ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, ah)L̃t

h(xh, ah))

Mixture of  and μ⋆,h μt

Theorem: Balanced CFR learns -Nash within  episodes of self-play.

  also achieves , but are not actual played policies.


Main technical highlight:

Sharp counterfactual regret decomposition + reduced variance brought by 

ε Õ (H4(XA + YB)/ε2)

{μt}T
t=1 Reg(T ) ≤ Õ ( H3XAT)

μ⋆,h



Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Corollary: Run Balanced OMD or Balanced CFR on all players ==> -NFCCE of 
multi-player general-sum IIEFGs within  episodes of play.

ε
Õ ((max

i
XiAi)/ε2)

Proof follows directly by known connection between NFCCE and no-regret learning 
in multi-player general-sum IIEFGs [Celli et al. 2019].

Normal-Form Coarse Correlated Equilibrium

 CCEGap(π) := max

i∈[m] ( max
π†

i

Vπ†
i ,π−i − Vπ) ≤ ε

No gains in deviating 
from correlated policy π



Summary

First line of near-optimal algorithms for learning IIEFGs from bandit feedback


Crucial use of balanced exploration policies

• distance functions in OMD

• sampling policies in CFR

Future directions

• Further understandings of OMD/CFR type algorithms

• Sample-efficient learning of other equilibria (e.g. correlated equilibria)

• Relationship between Markov Games and Extensive-Form Games

• Empirical investigations

Thank you!

Paper: https://arxiv.org/abs/2202.01752  

https://arxiv.org/abs/2202.01752

