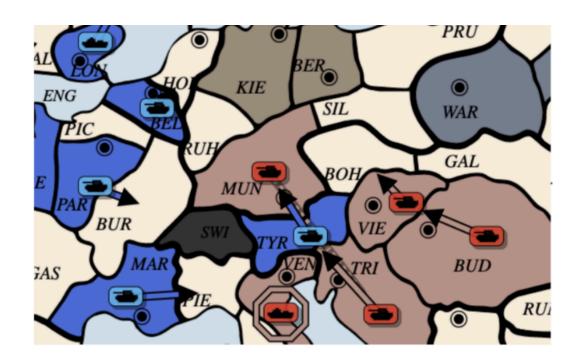
Near-Optimal Learning of Extensive-Form Games with Imperfect Information

Tiancheng Yu MIT

Joint work with Yu Bai (Salesforce Research), Chi Jin (Princeton) and Song Mei (UC Berkeley)

Multi-Agent RL / Games with Imperfect Information



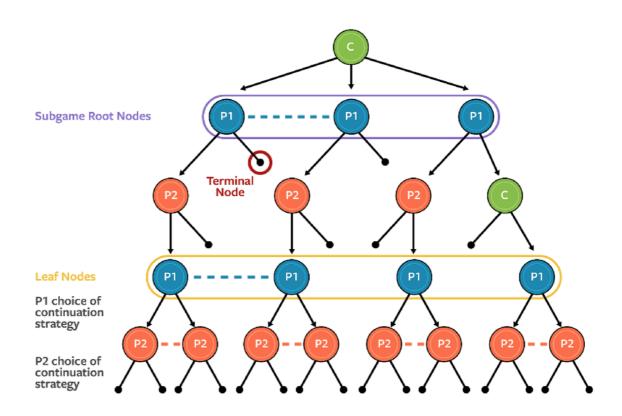
Imperfect Information:

Players can only observe partial information about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019], Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], ...

Imperfect-Information Extensive-Form Games (IIEFGs)

[Kuhn 1953]



A commonly used formulation of games involving

- Multi-agent
- Sequential plays
- Imperfect information

IIEFGs can be formulated as *Partially Observable Markov Games* (POMGs) with *tree structure* + *perfect recall* [Kovarik et al. 2019, Kozuno et al. 2021]

Two-Player Zero-Sum IIEFGs

Game value (expected cumulative reward):

$$V^{\mu,\nu} := \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \mid a_h \sim \mu_h(\cdot \mid \mathbf{x}_h), b_h \sim \nu_h(\cdot \mid \mathbf{y}_h)\right]$$

- μ: max-player
- ν: min-player
- $(x_h, y_h) = (x(s_h), y(s_h))$: information sets (observations) for the two players

$$NEGap(\mu, \nu) := \max_{\mu^{\dagger}} V^{\mu^{\dagger}, \nu} - \min_{\nu^{\dagger}} V^{\mu, \nu^{\dagger}} \le \varepsilon$$

Goal': No-regret (only control max player)

$$Reg(T) := \max_{\mu^{\dagger}} \sum_{t=1}^{T} V^{\mu^{\dagger}, \nu^{t}} - V^{\mu^{t}, \nu^{t}} = o(T)$$

Online-to-batch conversion (e.g. [Zinkevich et al. 2007])

Play 2 no-regret algs against each other => Average policies are approximate Nash

Existing approaches

Full feedback / known game:

- Formulation as a linear program [von Stengel 1996, Koller et al. 1996, ...]
- First-order optimization / online mirror descent (OMD) over sequence-form strategy space [Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, ...]
- Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, ...]

Bandit feedback (only observe trajectories from playing):

- Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
- Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, ...]
- Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]
 - Learns an ε -Nash within $\widetilde{O}((X^2A + Y^2B)/\varepsilon^2)$ episodes (current best)
 - X, Y: number of information sets; A, B: number of actions
 - Lower bound is $\Omega((XA + YB)/\varepsilon^2)$, still $\max\{X, Y\}$ factor away

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs from bandit feedback with near-optimal sample complexity?

Main Result

Theorem:

We design two new algorithms, **Balanced OMD** and **Balanced CFR**; both algorithms can learn an ε -Nash within $\widetilde{O}((XA + YB)/\varepsilon^2)$ episodes of play.

Algorithm	OMD	CFR	Sample Complexity
Zhang and Sandholm (2021)	- (model-based)		$\widetilde{\mathcal{O}}\left(S^2AB/arepsilon^2 ight)$
Farina and Sandholm (2021)		✓	$\widetilde{\mathcal{O}}(\operatorname{poly}\left(X,Y,A,B ight)/arepsilon^4)$
Farina et al. (2021)	✓		$\widetilde{\mathcal{O}}\left(\left(X^4A^3+Y^4B^3\right)/arepsilon^2 ight)$
Kozuno et al. (2021)	✓		$\widetilde{\mathcal{O}}\left(\left(X^2A+Y^2B\right)/arepsilon^2 ight)$
Balanced OMD (Algorithm 1)	✓		$\widetilde{\mathcal{O}}\left(\left(XA+YB ight)/arepsilon^{2} ight)$
Balanced CFR (Algorithm 2)		√	$\widetilde{\mathcal{O}}\left(\left(XA+YB\right)/\varepsilon^{2}\right)$
Lower bound (Theorem 6)	-	-	$\Omega\left(\left(XA+YB\right)/\varepsilon^{2}\right)$

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy μ^t , construct loss estimator

$$\widetilde{\ell}_h^t(x_h, a_h) := \frac{\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)}{\mu_{1:h}^t(x_h, a_h) + \gamma \mu_{1:h}^{\star,h}(x_h, a_h)}.$$

2. Update policy

$$\mu^{t+1} = \underset{\mu \in \Pi_{\max}}{\operatorname{argmin}} \, \eta \langle \, \widetilde{\ell}^t, \mu \rangle + D^{\operatorname{bal}}(\mu \| \mu^t),$$

(with efficient implementation)

Main new ingredient: Balanced dilated KL distance

$$D^{\text{bal}}(\mu \| \nu) := \sum_{h, x_h, a_h} \frac{\mu_{1:h}(x_h, a_h)}{\mu_{1:h}^{\star, h}(x_h, a_h)} \log \frac{\mu_h(a_h | x_h)}{\nu_h(a_h | x_h)},$$

= Dilated KL [Hoda et al. 2010] + reweighting by **Balanced exploration policies**

$$\mu_{1:h}^{\star,h}(x_h,a_h) = \prod_{h'=1}^h \frac{|C_h(x_{h'},a_{h'})|}{|C_h(x_{h'})|}$$
 Number of descendants of $(x_{h'},a_{h'})$ within h-th layer

(extension of [Farina et al. 2020c]).

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy μ^t , construct loss estimator

$$\widetilde{\ell}_{h}^{t}(x_{h}, a_{h}) := \frac{\mathbf{1}\{(x_{h}^{t}, a_{h}^{t}) = (x_{h}, a_{h})\} \cdot (1 - r_{h}^{t})}{\mu_{1:h}^{t}(x_{h}, a_{h}) + \gamma \mu_{1:h}^{\star, h}(x_{h}, a_{h})}.$$

2. Update policy

$$\mu^{t+1} = \underset{\mu \in \Pi_{\max}}{\operatorname{argmin}} \, \eta \langle \, \widetilde{\ell}^t, \mu \rangle + D^{\operatorname{bal}}(\mu \| \mu^t),$$

(with efficient implementation)

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy μ^t , construct loss estimator

$$\widetilde{\ell}_h^t(x_h, a_h) := \frac{\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)}{\mu_{1:h}^t(x_h, a_h) + \gamma \mu_{1:h}^{\star, h}(x_h, a_h)}.$$

2. Update policy

$$\mu^{t+1} = \underset{\mu \in \Pi_{\max}}{\operatorname{argmin}} \, \eta \langle \, \widetilde{\ell}^t, \mu \rangle + D^{\operatorname{bal}}(\mu \| \mu^t),$$

(with efficient implementation)

Theorem: Balanced OMD achieves regret bound

$$\operatorname{Reg}(T) \le \widetilde{O}(\sqrt{H^3 X A T})$$

and learns ε -Nash within $\widetilde{O}(H^3(XA + YB)/\varepsilon^2)$ episodes of self-play.

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy μ^t , construct loss estimator

$$\widetilde{\ell}_h^t(x_h, a_h) := \frac{\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)}{\mu_{1:h}^t(x_h, a_h) + \gamma \mu_{1:h}^{\star, h}(x_h, a_h)}.$$

2. Update policy

$$\mu^{t+1} = \underset{\mu \in \Pi_{\max}}{\operatorname{argmin}} \, \eta \langle \, \widetilde{\ell}^t, \mu \rangle + D^{\text{bal}}(\mu \| \mu^t),$$

(with efficient implementation)

Theorem: Balanced OMD achieves regret bound

$$\operatorname{Reg}(T) \le \widetilde{O}(\sqrt{H^3 X A T})$$

and learns ε -Nash within $\widetilde{O}(H^3(XA + YB)/\varepsilon^2)$ episodes of self-play.

Main technical highlight:

"Balancing effect" introduced by D^{bal} (adapts to geometry of policy space)

==> better stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]), by bounding a certain *log-partition function* via 2nd order Taylor expansion

Balanced CFR

Algorithm (Balanced CFR, max-player):

Mixture of $\mu^{\star,h}$ and μ^t

1. Play **H** episodes with policy $\mu_{1:h}^{\star,h}\mu_{h+1:H}^{t}$, observe trajectory

$$(x_1^{t,(h)}, a_1^{t,(h)}, r_1^{t,(h)}, \dots, x_H^{t,(h)}, a_H^{t,(h)}, r_H^{t,(h)})$$

2. Construct counterfactual loss estimator

$$\widetilde{L}_{h}^{t}(x_{h}, a_{h}) := \frac{\mathbf{1}\{(x_{h}^{t,(h)}, a_{h}^{t,(h)}) = (x_{h}, a_{h})\}}{\mu_{1:h}^{\star,h}(x_{h}, a_{h})} \cdot \sum_{h'=h}^{H} (1 - r_{h'}^{t,(h)}).$$

3. Update policy at each information set via Hedge

$$\mu_h^{t+1}(a \mid x_h) \propto_a \mu_h^t(a \mid x_h) \cdot \exp\left(-\eta \mu_{1:h}^{\star,h}(x_h, a_h) \widetilde{L}_h^t(x_h, a_h)\right).$$

(can also use Regret Matching [Zinkevich et al. 2007].)

Algorithm =

MCCFR framework [Lanctot et al. 2009, Farina et al. 2020c]

- + sampling by mixing importance weighting (using $\mu^{\star,h}$) and Monte Carlo (using μ^{t})
- + "adaptive" learning rate $\mu_{1:h}^{\star,h}(x_h,a_h)$ at each infoset

Balanced CFR

Algorithm (Balanced CFR, max-player):

Mixture of $\mu^{\star,h}$ and μ^t

1. Play **H** episodes with policy $\mu_{1:h}^{\star,h}\mu_{h+1:H}^{t}$, observe trajectory

$$(x_1^{t,(h)}, a_1^{t,(h)}, r_1^{t,(h)}, \dots, x_H^{t,(h)}, a_H^{t,(h)}, r_H^{t,(h)})$$

2. Construct counterfactual loss estimator

$$\widetilde{L}_{h}^{t}(x_{h}, a_{h}) := \frac{\mathbf{1}\{(x_{h}^{t,(h)}, a_{h}^{t,(h)}) = (x_{h}, a_{h})\}}{\mu_{1:h}^{\star,h}(x_{h}, a_{h})} \cdot \sum_{h'=h}^{H} (1 - r_{h'}^{t,(h)}).$$

3. Update policy at each information set via Hedge

$$\mu_h^{t+1}(a \mid x_h) \propto_a \mu_h^t(a \mid x_h) \cdot \exp\left(-\eta \mu_{1:h}^{\star,h}(x_h, a_h) \widetilde{L}_h^t(x_h, a_h)\right).$$

(can also use Regret Matching [Zinkevich et al. 2007].)

Balanced CFR

Algorithm (Balanced CFR, max-player):

Mixture of $\mu^{\star,h}$ and μ^t

1. Play **H** episodes with policy $\mu_{1:h}^{\star,h}\mu_{h+1:H}^{t}$, observe trajectory

$$(x_1^{t,(h)}, a_1^{t,(h)}, r_1^{t,(h)}, \dots, x_H^{t,(h)}, a_H^{t,(h)}, r_H^{t,(h)})$$

2. Construct counterfactual loss estimator

$$\widetilde{L}_{h}^{t}(x_{h}, a_{h}) := \frac{\mathbf{1}\{(x_{h}^{t,(h)}, a_{h}^{t,(h)}) = (x_{h}, a_{h})\}}{\mu_{1:h}^{\star,h}(x_{h}, a_{h})} \cdot \sum_{h'=h}^{H} (1 - r_{h'}^{t,(h)}).$$

3. Update policy at each information set via Hedge

$$\mu_h^{t+1}(a \mid x_h) \propto_a \mu_h^t(a \mid x_h) \cdot \exp\left(-\eta \mu_{1:h}^{\star,h}(x_h, a_h) \widetilde{L}_h^t(x_h, a_h)\right).$$

(can also use Regret Matching [Zinkevich et al. 2007].)

Theorem: Balanced CFR learns ε -Nash within $\widetilde{O}(H^4(XA + YB)/\varepsilon^2)$ episodes of self-play.

 $\{\mu^t\}_{t=1}^T$ also achieves $\operatorname{Reg}(T) \leq \widetilde{O}(\sqrt{H^3XAT})$, but are not actual played policies.

Main technical highlight:

Sharp counterfactual regret decomposition + reduced variance brought by $\mu^{\star,h}$

Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Normal-Form Coarse Correlated Equilibrium

$$\begin{aligned} \text{CCEGap}(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^\dagger} V^{\pi_i^\dagger, \pi_{-i}} - V^\pi \right) \leq \varepsilon \\ \text{No gains in deviating} \\ \text{from } \textit{correlated policy } \pi \end{aligned}$$

Corollary: Run Balanced OMD or Balanced CFR on all players ==> ε -NFCCE of multi-player general-sum IIEFGs within $\widetilde{O}((\max_i X_i A_i)/\varepsilon^2)$ episodes of play.

Proof follows directly by known connection between NFCCE and no-regret learning in multi-player general-sum IIEFGs [Celli et al. 2019].

Summary

First line of near-optimal algorithms for learning IIEFGs from bandit feedback

Crucial use of balanced exploration policies

- distance functions in OMD
- sampling policies in CFR

Future directions

- Further understandings of OMD/CFR type algorithms
- Sample-efficient learning of other equilibria (e.g. correlated equilibria)
- Relationship between Markov Games and Extensive-Form Games
- Empirical investigations

Thank you!

Paper: https://arxiv.org/abs/2202.01752