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Multi-Agent RL / Games with Imperfect Information

Imperfect Information:
Players can only observe partial information about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019,
Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], ...

Image source (right):
No-Press Diplomacy from Scratch, Bakhtin et al. 2021.



Imperfect-Information Extensive-Form Games (lIIEFGs)
[Kuhn 1953]

A commonly used formulation of games involving
e Multi-agent

e Seqguential plays

¢ |mperfect information

@ IIEFGs can be formulated as Partially Observable Markov Games (POMGS)
with tree structure + perfect recall [Kovarik et al. 2019, Kozuno et al. 2021]

Image source: Superhuman Al for Multiplayer Poker,
Brown & Sandholm 2019.



Two-Player Zero-Sum IIEFGs

Game value (expected cumulative reward):
H

VY =T [ Z 1(Sps s by) | ay ~ (- 133), by, ~ vy (- |)’h)]
h=1

e /i: max-player

e 1. min-player
o (x,,y,) = (x(s},), y(s},)): information sets (observations) for the two players

Goal: Approximate Nash Equilibrium (controlling both players)

NEGap(u,v) := max Vi miTn ver' < g
U v

Goal’: No-regret (only control max player)
T

.: MT’VI _ //tt,l/t _
Reg(T) : max Z % 1% o(T)

K=

Online-to-batch conversion (e.g. [Zinkevich et al. 2007])
Play 2 no-regret algs against each other => Average policies are approximate Nash



Existing approaches

Full feedback / known game:

e Formulation as a linear program [von Stengel 1996, Koller et al. 1996, ...]

e First-order optimization / online mirror descent (OMD) over sequence-form strategy space
[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, ...]

e (Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin
2014, Burch et al. 2019, Farina et al. 2020D, ...]

Bandit feedback (only observe trajectories from playing):
e Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
e Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, ...]
e |Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]
e Learns an e-Nash within O ((X2A + Y2B)/&2) episodes (current best)
e X, Y: number of information sets; A, B: number of actions
e Lower bound is Q((XA + YB)/e?), still max{X, Y} factor away

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs
from bandit feedback with near-optimal sample complexity”?



Main Result

.

-
Theorem:

We design two new algorithms, Balanced OMD and Balanced CFR; both
algorithms can learn an e-Nash within 5((XA + YB)/e?) episodes of play.

Algorithm OMD | CFR Sample Complexity

Zhang and Sandholm (2021) | - (model-based) O (S?AB/¢?)
Farina and Sandholm (2021) v O(poly (X,Y, A, B) /e*)
Farina et al. (2021) v O ((X*A4% +Y1B?) /e?)

\

Kozuno et al. (2021) O ((X2A+Y?B) /e?)
Balanced OMD (Algorithm 1) | Vv O ((XA+YB)/e?)
Balanced CFR (Algorithm 2) v O (XA+YB)/e?)

Q((XA+YB)/e?)

Lower bound (Theorem 6) - -




Balanced OMD

: Algorithm (Balanced OMD, max-player):
1. Play an episode with policy u’, construct loss estimator
— 1{(~xltp a}tt) — (xha ah)} ) (1 — 7']2)

£ (x,,a,) =
K> Ay
ul. (g, ap) + Wffizh(xh, ap)

2. Update policy

u = argmin (£, ) + D),
uell

max

(with efficient implementation)
-

Main new ingredient: Balanced dilated KL distance
U :h(xha ah) //th(ah | ,X,'h)
DY(ullv) == Y == log |
h,x,,a H1:h (xh’ ah) Vh(ah | Xh)
XpsUp

= Dilated KL [Hoda et al. 2010] + reweighting by Balanced exploration policies
h

M*’h(xha a,) = H | G @) | Number of descendants
L:h o 1 G| of (x;,, a;,) within h-th layer

(extension of [Farina et al. 2020c]).



Balanced OMD

: Algorithm (Balanced OMD, max-player):
1. Play an episode with policy u’, construct loss estimator

~, 1{(xp, ap) = (. ap)} - (1 = 17)
Lﬂh(xh, ah) = : s .
i an) + yu iy O, ap)
2. Update policy

u'*! = argminn( ", ) + D (ul|u?),
uell

max

(with efficient implementation)




Balanced OMD

: Algorithm (Balanced OMD, max-player):
1. Play an episode with policy u’, construct loss estimator
— 1{(~x}tp a}tt) — (xha ah)} ) (1 — 7']2)

£l (x,,a;) =
B\Ans @h
i (Xns ap) + Wffhh(xha ay)

2. Update policy

u = argmin (£, ) + D),
uell

max

(with efficient implementation)

\

Theorem: Balanced OMD achieves regret bound
Reg(T) < O(VH3XAT)
and learns &-Nash within 5(H3(XA + YB)/e?) episodes of self-play.




Balanced OMD

: Algorithm (Balanced OMD, max-player):
1. Play an episode with policy u’, construct loss estimator
7 1{(~xltp altl) — (xha ah)} ) (1 _ 7";;)

4 t(x a,) .=
\Xps 4y,
ﬂf :h(xh9 a) + Wffhh(xha ay)

2. Update policy

u = argmin (£, ) + D),
uell

max

(with efficient implementation)

Theorem: Balanced OMD achieves regret bound
Reg(T) < O(VH3XAT)
and learns &-Nash within 5(H3(XA + YB)/e?) episodes of self-play.

Main technical highlight:

“Balancing effect” introduced by D (adapts to geometry of policy space)

==> petter stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]) ,
by bounding a certain log-partition function via 2nd order Taylor expansion



Balanced CFR

1

[ ny
" Algorithm (Balanced CFR, max—player)' Mixture of ™" and u" |

1. Play H episodes with policy /41 . ﬂh L 1.pp ObServe trajectory

,(h) t(h) .1,(h) t,(h) t(h) .1,(h)
U s s X A T )

2. Construct counterfactual loss estimator
1{:®, a?") = (x,a,)) &

Z (1= ri®).

3. Update policy at each information set via Hedge

(x ,ay

Li(x,, a) =
n\ X Ay,
M1;i,h(xh, ap)

f+1(a | x,) &, pr(alx,) - eXp( ;7/41 = "(x,, ah)L (X, ah))

(can also use Regret Matching [Zinkevich et al. 2007].)
§

Algorithm =

MCCFR framework [Lanctot et al. 2009, Farina et al. 2020c¢]

+ sampling by mixing importance weighting (using x*") and Monte Carlo (using x/)
+ “adaptive” learning rate u*(x;, a;) at each infoset



Balanced CFR
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" Algorithm (Balanced CFR, max—player)' Mixture of ™" and u" |

1. Play H episodes with policy /41 . ,uh L 1.pp ObServe trajectory

,(h) t(h) .1,(h) t,(h) t(h) .1,(h)
U s s X A T )

2. Construct counterfactual loss estimator
1{:®, a?") = (x,a,)) &

Z (1= ri®).

3. Update policy at each information set via Hedge

(x ,ay

Li(x,, a) =
n\ X Ay,
Mffi,h(xh,ah)

H‘l(Cllxh) o, p(alx,) - eXp( ;! *hy, ah)L (X, ah)).

(can also use Regret Matching [Zinkevich et al. 2007].)




Balanced CFR

1

[ ny
" Algorithm (Balanced CFR, max—player)' Mixture of ™" and u" | )

1. Play H episodes with policy /41 . ,uh L 1.pp ObServe trajectory

,(h) t(h) .1,(h) t,(h) t(h) .1,(h)
U s s X A T )

2. Construct counterfactual loss estimator
1{:®, a?") = (x,a,)) &

Z (1= ri®).

3. Update policy at each information set via Hedge

(x ,ay

Li(x,, a) =
n\ X Ay,
Mffi,h(xh,ah)

H‘l(Cllxh) x, ui(alx,) - eXp( ;! *hy, ah)L (X, ah))

(can also use Regret Matching [Zinkevich et al. 2007].)
§ y

Theorem: Balanced CFR learns &-Nash within 5(H4(XA + YB)/e?) episodes of self-play.

“ {u"}L . also achieves Reg(T) < 5(x/ H’XAT), but are not actual played policies.
=1

Main technical highlight:
Sharp counterfactual regret decomposition + reduced variance brought by p*-"



Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Normal-Form Coarse Correlated Equilibrium

CCEGap(r) := max <max Vg V”) <e
i€lm] \ A

No gains in deviating

from correlated policy

r )
Corollary: Run Balanced OMD or Balanced CFR on all players ==> e-NFCCE of
multi-player general-sum IIEFGs within 5((max Xl-Al-)/ez) episodes of play.

l

. J

Proof follows directly by known connection between NFCCE and no-regret learning
in multi-player general-sum [IEFGs [Celli et al. 2019].



Summary

First line of near-optimal algorithms for learning lIEFGs from bandit feedback

Crucial use of balanced exploration policies
e distance functions in OMD
e sampling policies in CFR

Future directions

e Further understandings of OMD/CFR type algorithms

e Sample-efficient learning of other equilibria (e.g. correlated equilibria)
e Relationship between Markov Games and Extensive-Form Games

e Empirical investigations

Thank you!
Paper: https://arxiv.org/abs/2202.01752
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