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Differential Privacy

Ghazi, Kamath, Kumar, Manurangsi Faster Privacy Accounting via Evolving Discretization

M

x1 x2 · · · xn

M satisfies (ε, δ)-differential privacy if
for all neighboring X, X′, and all outcome events S,

Pr[M(X) ∈ S] ≤ eε · Pr[M(X′) ∈ S] + δ

[Dwork et al. ’06]
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Privacy Accounting: Given M and ε, compute δ such that M satisfies (ε, δ)-DP.
(Useful for computing parameters underlying M, e.g. noise scale in DP-SGD.)

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
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for all neighboring X, X′, and all outcome events S,

Pr[M(X) ∈ S] ≤ eε · Pr[M(X′) ∈ S] + δ

[Dwork et al. ’06]

Example (DP-SGD): SGD with Gaussian noise added to each mini-batch gradient.
(Self-compositions of subsampled Gaussian mechanism.)

Privacy Accounting: Given M and ε, compute δ such that M satisfies (ε, δ)-DP.
(Useful for computing parameters underlying M, e.g. noise scale in DP-SGD.)

Desiderata: ▶ δ value close to optimal value δM(ε)

▶ Fast computation
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⇝

PRV forM PRV forM◦k

To make PRV approach practical:

▶ Discretize into buckets [Meiser-Mohammadi ’18]

▶ Nearly linear-time composition using Fast Fourier Transform [Koskela et al ’20]
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Reference
Running time for k-fold compositions
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[Koskela et al. ’21] Õ(k1.5) Õ(k2.5)

4 / 7



Discretization of PRVs

Ghazi, Kamath, Kumar, Manurangsi Faster Privacy Accounting via Evolving Discretization

⇝

PRV forM PRV forM◦k

Reference
Running time for k-fold compositions
Homogeneous Heterogeneous

[Koskela et al. ’21] Õ(k1.5) Õ(k2.5)
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Homogeneous Heterogeneous

[Koskela et al. ’21] Õ(k1.5) Õ(k2.5)
[Gopi et al. ’21] Õ(k0.5) Õ(k1.5)

This work logO(1)(k) Õ(k)
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⇝
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Discretized PRV forM◦k

Reference
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[Koskela et al. ’21] ≈ k0.5 ≈ 1
k ≈ k1.5

[Gopi et al. ’21] ≈ O(1) ≈ 1
k0.5 ≈ k0.5

This work
Stage 1 ≈ 1

k0.25 ≈ 1
k0.5 ≈ k0.25

Stage 2 ≈ O(1) ≈ 1
k0.25 ≈ k0.25

Recursively with O(log k) stages, the running time is logO(1)(k).
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Evaluation of Two-Stage Algorithm
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DP-SGD application : Compositions of Poisson subsampled Gaussian mechanism

Comparison against [Gopi et al. ’21]

Running Times Number of Buckets Delta Estimates
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