

Faster Privacy Accounting via Evolving Discretization

Badih
Ghazi

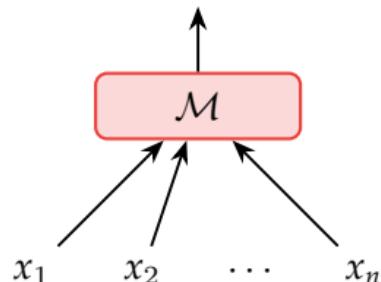
Pritish
Kamath

Ravi
Kumar

Pasin
Manurangsi

Google Research
Mountain View

Differential Privacy

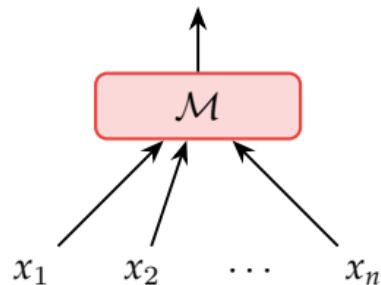


[Dwork et al. '06]

\mathcal{M} satisfies (ε, δ) -differential privacy if for all *neighboring* X, X' , and all outcome events S ,

$$\Pr[\mathcal{M}(X) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(X') \in S] + \delta$$

Differential Privacy



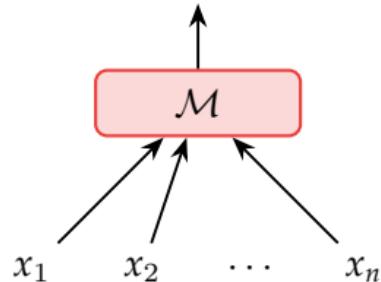
[Dwork et al. '06]

\mathcal{M} satisfies (ε, δ) -differential privacy if for all *neighboring* X, X' , and all outcome events S ,

$$\Pr[\mathcal{M}(X) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(X') \in S] + \delta$$

Example (DP-SGD): SGD with Gaussian noise added to each mini-batch gradient.
(Self-compositions of subsampled Gaussian mechanism.)

Differential Privacy



[Dwork et al. '06]

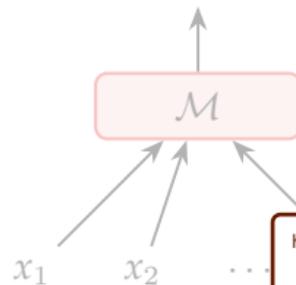
\mathcal{M} satisfies (ε, δ) -differential privacy if for all *neighboring* X, X' , and all outcome events S ,

$$\Pr[\mathcal{M}(X) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(X') \in S] + \delta$$

Example (DP-SGD): SGD with Gaussian noise added to each mini-batch gradient.
(Self-compositions of subsampled Gaussian mechanism.)

Privacy Accounting: Given \mathcal{M} and ε , compute δ such that \mathcal{M} satisfies (ε, δ) -DP.
(Useful for computing parameters underlying \mathcal{M} , e.g. noise scale in DP-SGD.)

Differential Privacy

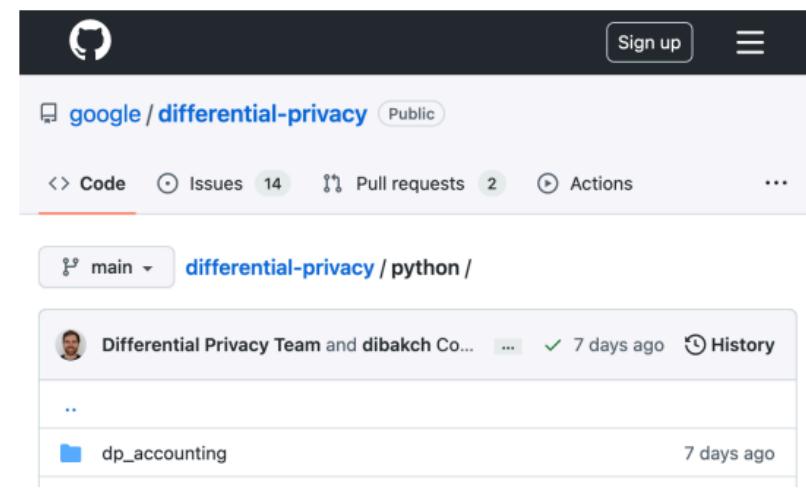


[Dwork et al. '06]

M satisfies (ϵ, δ) -differential privacy if for all neighboring X, X' , and all outcome events S ,

$$\Pr[M(X) \in S] \leq e^\epsilon \cdot \Pr[M(X') \in S] + \delta$$

https://github.com/google/differential-privacy/tree/main/python/dp_accounting



Example (DP-SGD)

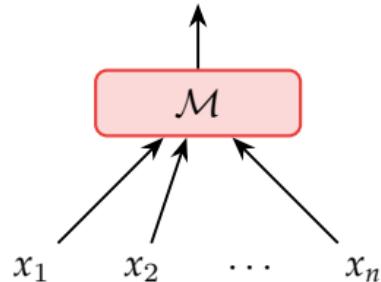
Privacy Accounting

(Using

-batch gradient.
ussian mechanism.)

satisfies (ϵ, δ) -DP.
cale in DP-SGD.)

Differential Privacy



[Dwork et al. '06]

\mathcal{M} satisfies (ε, δ) -differential privacy if for all *neighboring* X, X' , and all outcome events S ,

$$\Pr[\mathcal{M}(X) \in S] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(X') \in S] + \delta$$

Example (DP-SGD): SGD with Gaussian noise added to each mini-batch gradient.
(Self-compositions of subsampled Gaussian mechanism.)

Privacy Accounting: Given \mathcal{M} and ε , compute δ such that \mathcal{M} satisfies (ε, δ) -DP.
(Useful for computing parameters underlying \mathcal{M} , e.g. noise scale in DP-SGD.)

Desiderata:

- δ value close to optimal value $\delta_{\mathcal{M}}(\varepsilon)$
- Fast computation

Accounting using Privacy Random Variables (PRVs)

$\text{PRV}_{(P,Q)} := \text{ distributed as } \log \frac{P(\omega)}{Q(\omega)} \text{ for } \omega \sim P.$

Accounting using Privacy Random Variables (PRVs)

$\text{PRV}_{(P,Q)} := \text{ distributed as } \log \frac{P(\omega)}{Q(\omega)} \text{ for } \omega \sim P.$

PRV Accounting Approach:

- ▶ Associate $\text{PRV}_{\mathcal{M}}$ to a mechanism \mathcal{M} , to derive upper bounds on $\delta_{\mathcal{M}}(\varepsilon)$:

$$\delta_{\mathcal{M}}(\varepsilon) \leq \mathbb{E}_{Y \sim \text{PRV}_{\mathcal{M}}} \max \left\{ 0, 1 - e^{\varepsilon - Y} \right\}$$

Accounting using Privacy Random Variables (PRVs)

$\text{PRV}_{(P,Q)} := \text{distributed as } \log \frac{P(\omega)}{Q(\omega)} \text{ for } \omega \sim P.$

PRV Accounting Approach:

- ▶ Associate $\text{PRV}_{\mathcal{M}}$ to a mechanism \mathcal{M} , to derive upper bounds on $\delta_{\mathcal{M}}(\varepsilon)$:

$$\delta_{\mathcal{M}}(\varepsilon) \leq \mathbb{E}_{Y \sim \text{PRV}_{\mathcal{M}}} \max \left\{ 0, 1 - e^{\varepsilon - Y} \right\}$$

- ▶ Composition of mechanisms corresponds to addition of PRVs : $\text{PRV}_{\mathcal{M} \circ \mathcal{M}'} = \text{PRV}_{\mathcal{M}} + \text{PRV}_{\mathcal{M}'}$.

Accounting using Privacy Random Variables (PRVs)

$\text{PRV}_{(P,Q)} := \text{distributed as } \log \frac{P(\omega)}{Q(\omega)} \text{ for } \omega \sim P.$

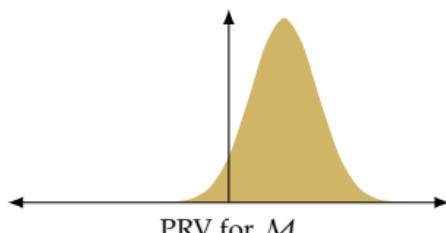
PRV Accounting Approach:

- ▶ Associate $\text{PRV}_{\mathcal{M}}$ to a mechanism \mathcal{M} , to derive upper bounds on $\delta_{\mathcal{M}}(\varepsilon)$:

$$\delta_{\mathcal{M}}(\varepsilon) \leq \mathbb{E}_{Y \sim \text{PRV}_{\mathcal{M}}} \max \left\{ 0, 1 - e^{\varepsilon - Y} \right\}$$

- ▶ Composition of mechanisms corresponds to addition of PRVs : $\text{PRV}_{\mathcal{M} \circ \mathcal{M}'} = \text{PRV}_{\mathcal{M}} + \text{PRV}_{\mathcal{M}'}$.

Example: Gaussian mechanism $\mathcal{M}(X) := \sum_i x_i + \zeta$ for $\zeta \sim \mathcal{N}(0, \sigma^2)$ (with $|x_i| \leq 1$)



Accounting using Privacy Random Variables (PRVs)

$\text{PRV}_{(P,Q)} := \text{distributed as } \log \frac{P(\omega)}{Q(\omega)} \text{ for } \omega \sim P.$

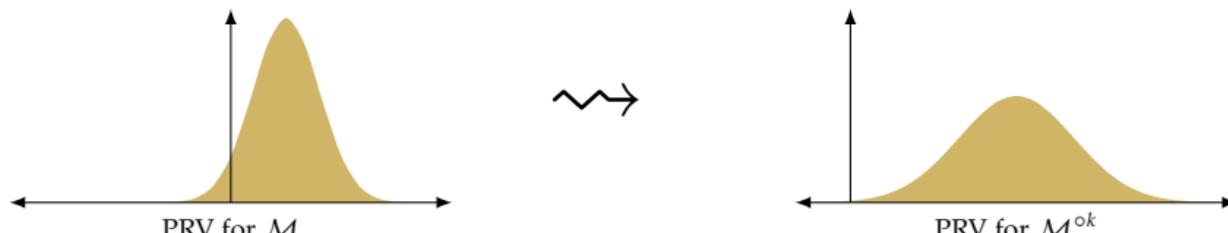
PRV Accounting Approach:

- Associate $\text{PRV}_{\mathcal{M}}$ to a mechanism \mathcal{M} , to derive upper bounds on $\delta_{\mathcal{M}}(\varepsilon)$:

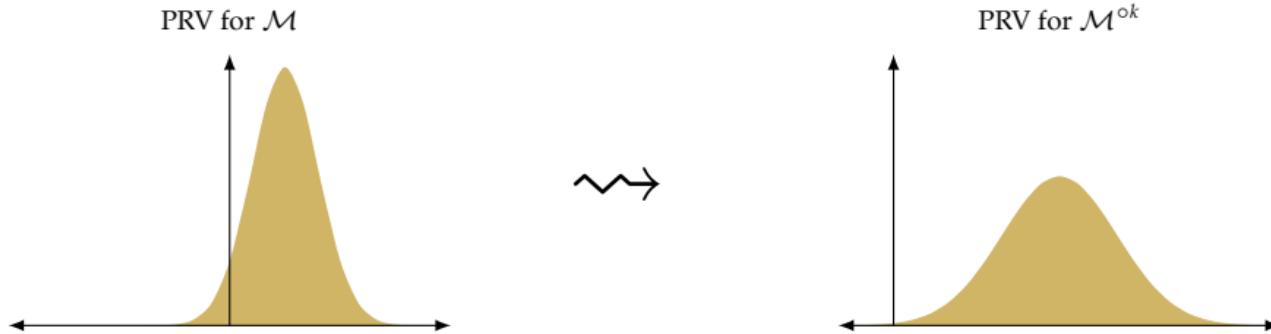
$$\delta_{\mathcal{M}}(\varepsilon) \leq \mathbb{E}_{Y \sim \text{PRV}_{\mathcal{M}}} \max \left\{ 0, 1 - e^{\varepsilon - Y} \right\}$$

- Composition of mechanisms corresponds to addition of PRVs : $\text{PRV}_{\mathcal{M} \circ \mathcal{M}'} = \text{PRV}_{\mathcal{M}} + \text{PRV}_{\mathcal{M}'}$.

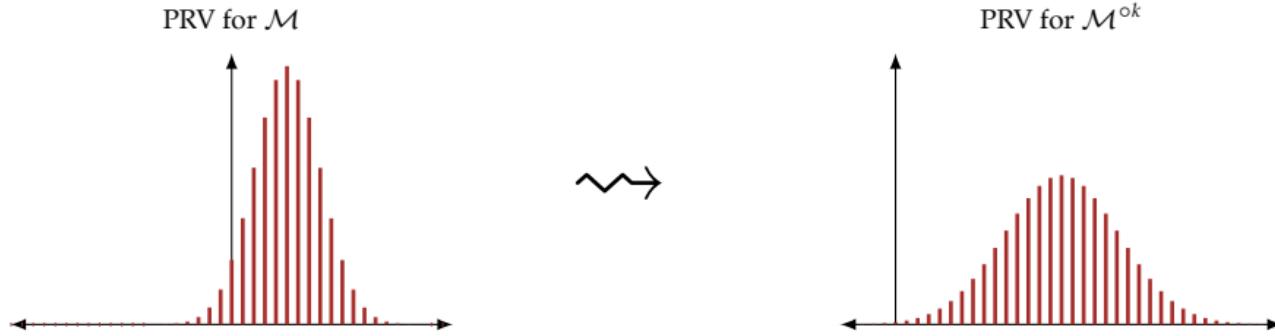
Example: Gaussian mechanism $\mathcal{M}(X) := \sum_i x_i + \zeta$ for $\zeta \sim \mathcal{N}(0, \sigma^2)$ (with $|x_i| \leq 1$)



Discretization of PRVs



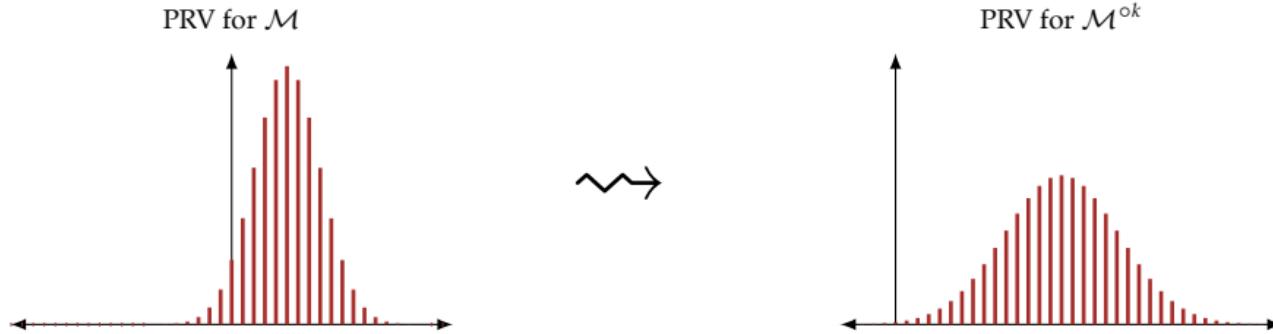
Discretization of PRVs



To make PRV approach practical:

- ▶ Discretize into buckets [Meiser-Mohammadi '18]

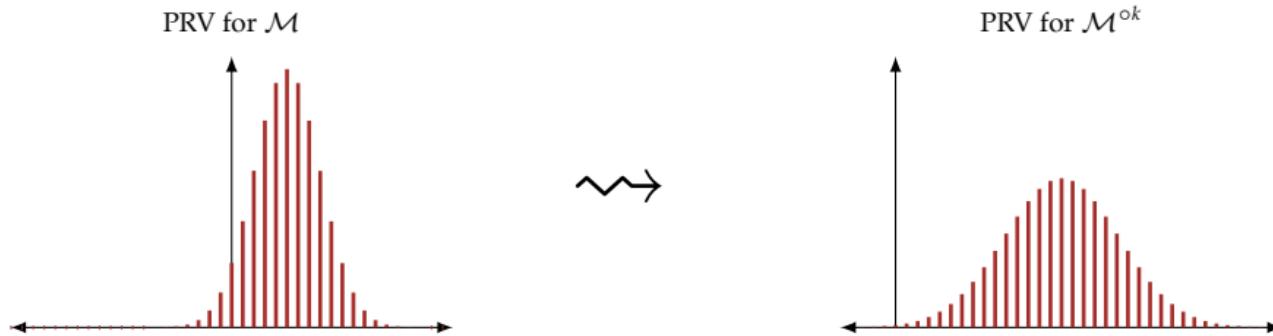
Discretization of PRVs



To make PRV approach practical:

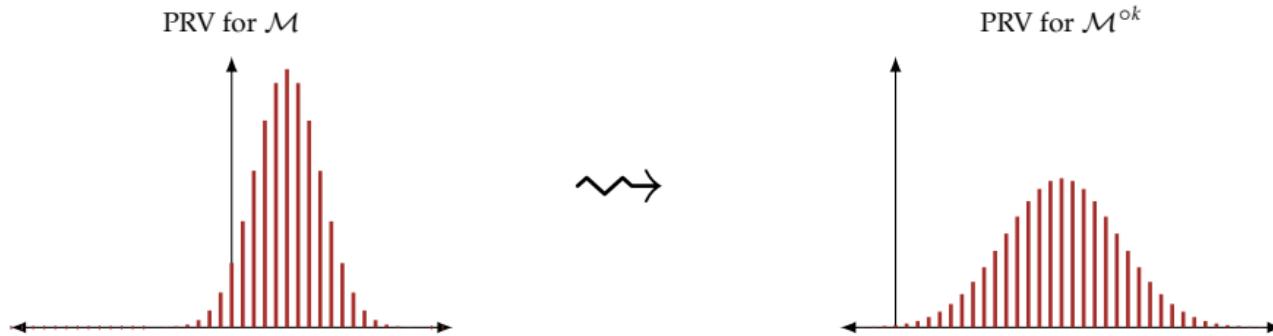
- ▶ Discretize into buckets [Meiser-Mohammadi '18]
- ▶ Nearly linear-time composition using Fast Fourier Transform [Koskela et al '20]

Discretization of PRVs



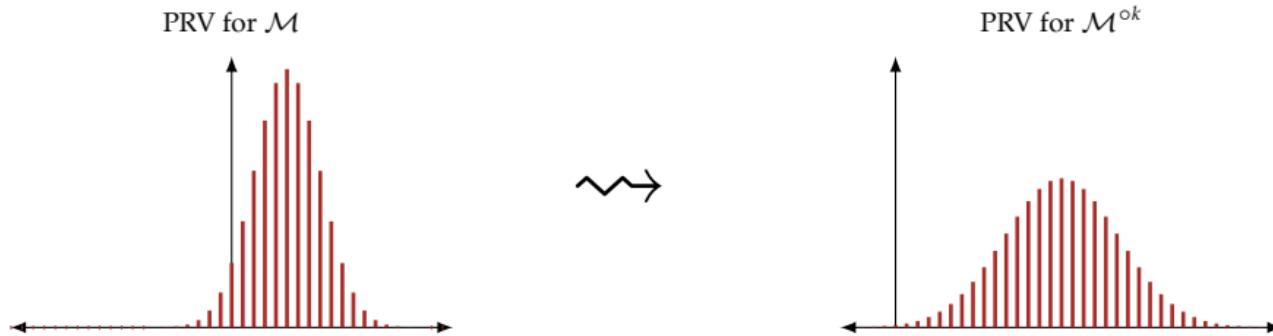
Reference	Running time for k -fold compositions	
	Homogeneous	Heterogeneous
[Koskela et al. '21]	$\tilde{O}(k^{1.5})$	$\tilde{O}(k^{2.5})$

Discretization of PRVs



Reference	Running time for k -fold compositions	
	Homogeneous	Heterogeneous
[Koskela et al. '21]	$\tilde{O}(k^{1.5})$	$\tilde{O}(k^{2.5})$
[Gopi et al. '21]	$\tilde{O}(k^{0.5})$	$\tilde{O}(k^{1.5})$

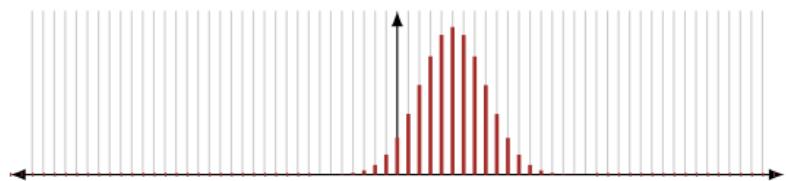
Discretization of PRVs



Reference	Running time for k -fold compositions	
	Homogeneous	Heterogeneous
[Koskela et al. '21]	$\tilde{O}(k^{1.5})$	$\tilde{O}(k^{2.5})$
[Gopi et al. '21]	$\tilde{O}(k^{0.5})$	$\tilde{O}(k^{1.5})$
This work	$\log^{O(1)}(k)$	$\tilde{O}(k)$

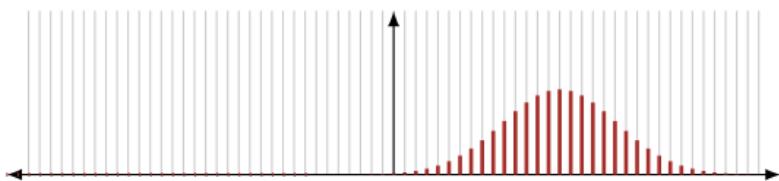
Evolving Discretization Approach

Discretized PRV for \mathcal{M}



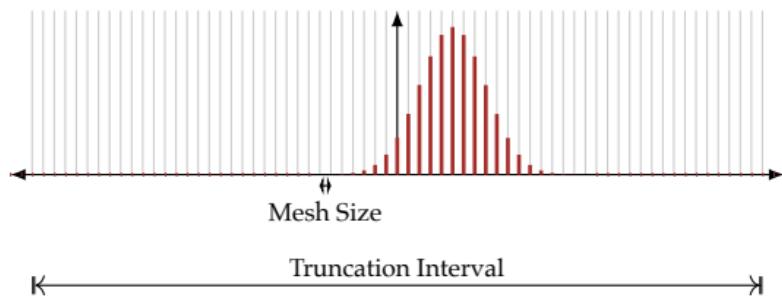
k -fold
compose
 \rightsquigarrow

Discretized PRV for $\mathcal{M}^{\circ k}$



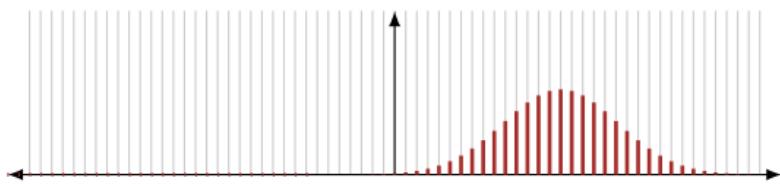
Evolving Discretization Approach

Discretized PRV for \mathcal{M}



k -fold
compose
 \rightsquigarrow

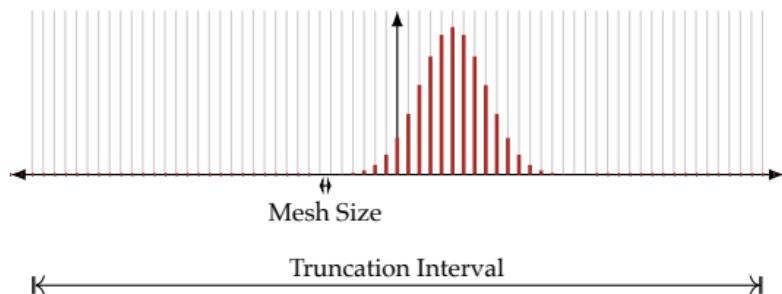
Discretized PRV for $\mathcal{M}^{\circ k}$



Reference	Truncation Interval	Mesh Size	Number of Buckets
[Koskela et al. '21]	$\approx k^{0.5}$	$\approx \frac{1}{k}$	$\approx k^{1.5}$

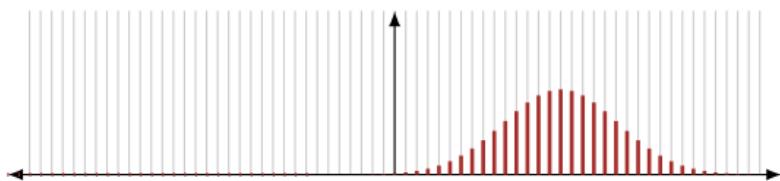
Evolving Discretization Approach

Discretized PRV for \mathcal{M}



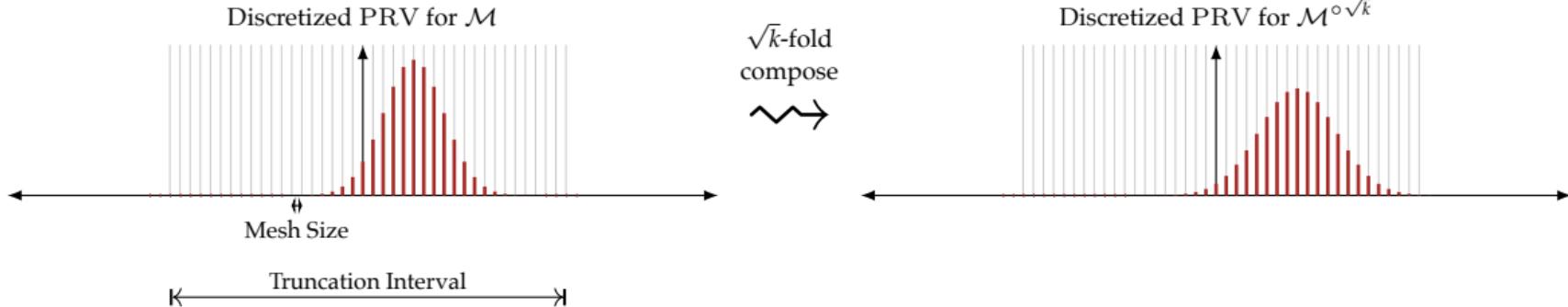
k -fold
compose
 \rightsquigarrow

Discretized PRV for $\mathcal{M}^{\circ k}$



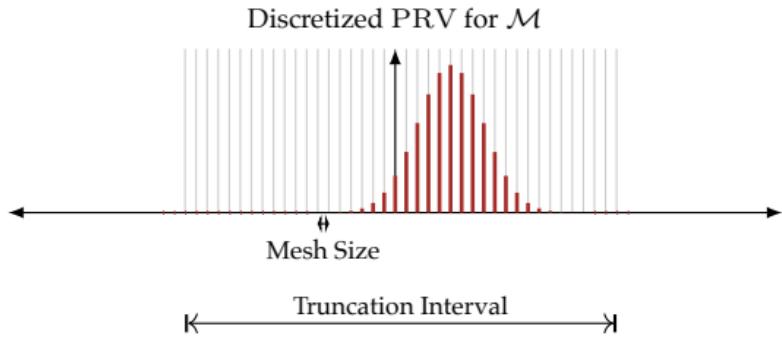
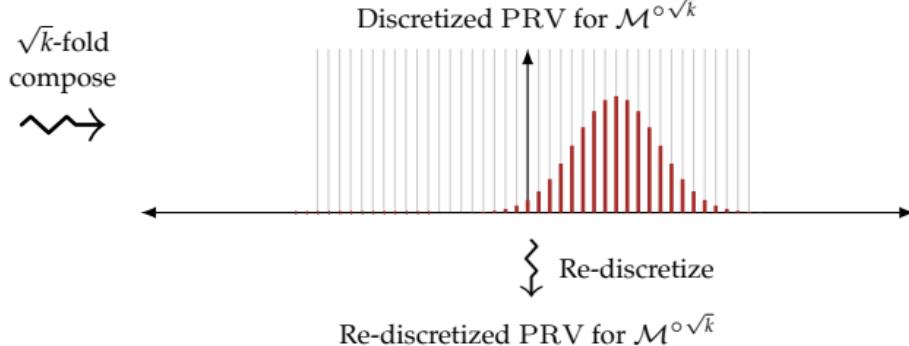
Reference	Truncation Interval	Mesh Size	Number of Buckets
[Koskela et al. '21]	$\approx k^{0.5}$	$\approx \frac{1}{k}$	$\approx k^{1.5}$
[Gopi et al. '21]	$\approx O(1)$	$\approx \frac{1}{k^{0.5}}$	$\approx k^{0.5}$

Evolving Discretization Approach



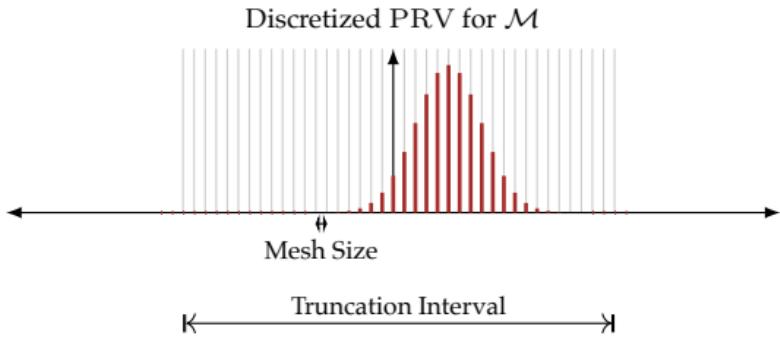
Reference	Truncation Interval	Mesh Size	Number of Buckets
[Koskela et al. '21]	$\approx k^{0.5}$	$\approx \frac{1}{k}$	$\approx k^{1.5}$
[Gopi et al. '21]	$\approx O(1)$	$\approx \frac{1}{k^{0.5}}$	$\approx k^{0.5}$
This work	Stage 1	$\approx \frac{1}{k^{0.25}}$	$\approx k^{0.25}$

Evolving Discretization Approach

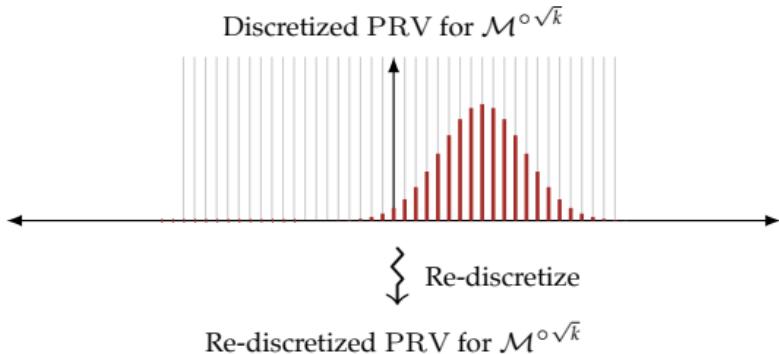


Reference	Truncation Interval	Mesh Size	Number of Buckets
[Koskela et al. '21]	$\approx k^{0.5}$	$\approx \frac{1}{k}$	$\approx k^{1.5}$
[Gopi et al. '21]	$\approx O(1)$	$\approx \frac{1}{k^{0.5}}$	$\approx k^{0.5}$
This work	Stage 1	$\approx \frac{1}{k^{0.25}}$	$\approx k^{0.25}$
	Stage 2	$\approx O(1)$	$\approx \frac{1}{k^{0.25}}$

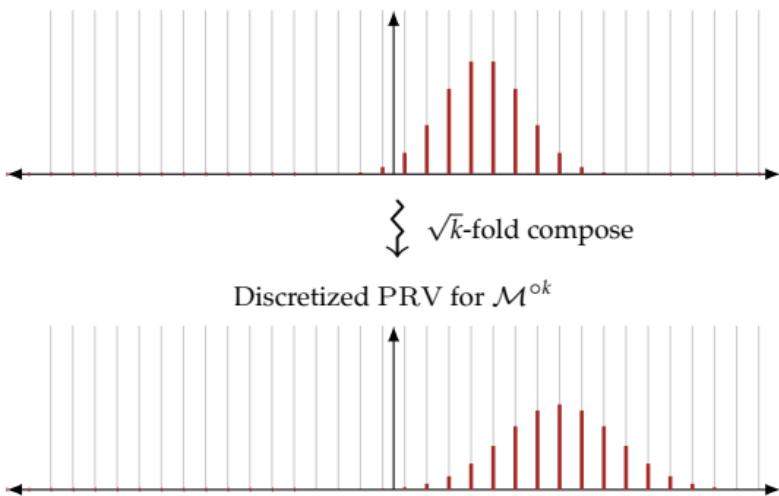
Evolving Discretization Approach



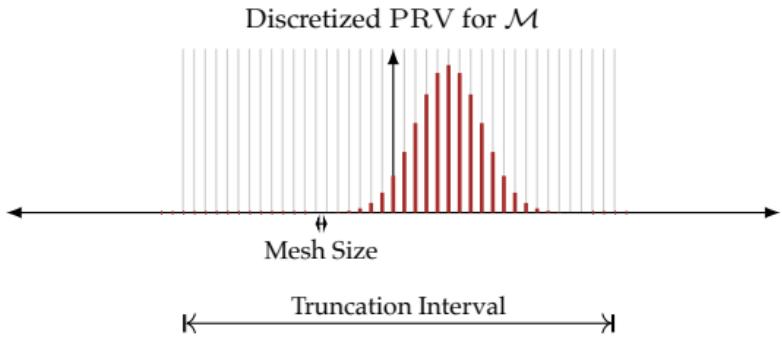
\sqrt{k} -fold
compose
~~~



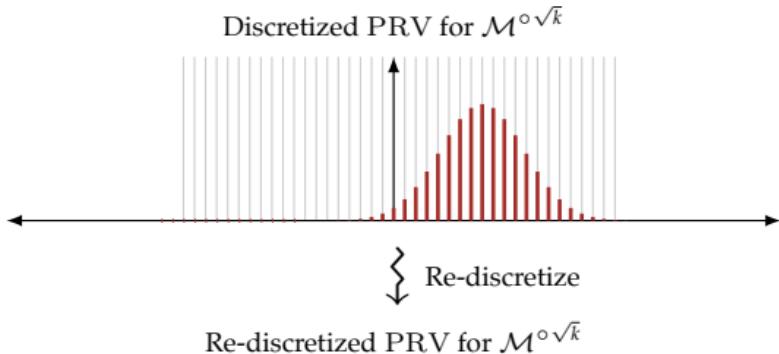
| Reference            | Truncation Interval | Mesh Size                    | Number of Buckets            |
|----------------------|---------------------|------------------------------|------------------------------|
| [Koskela et al. '21] | $\approx k^{0.5}$   | $\approx \frac{1}{k}$        | $\approx k^{1.5}$            |
| [Gopi et al. '21]    | $\approx O(1)$      | $\approx \frac{1}{k^{0.5}}$  | $\approx k^{0.5}$            |
| This work            | Stage 1             | $\approx \frac{1}{k^{0.25}}$ | $\approx \frac{1}{k^{0.5}}$  |
|                      | Stage 2             | $\approx O(1)$               | $\approx \frac{1}{k^{0.25}}$ |



# Evolving Discretization Approach

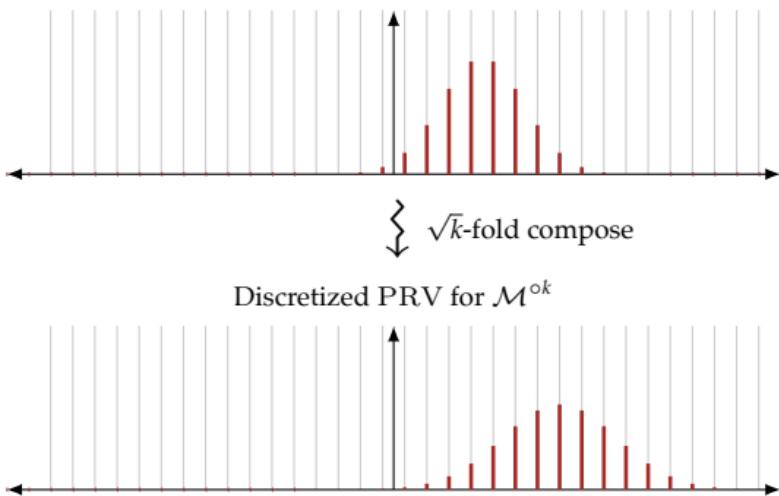


$\sqrt{k}$ -fold  
compose  
~~~~~



Reference	Truncation Interval	Mesh Size	Number of Buckets
[Koskela et al. '21]	$\approx k^{0.5}$	$\approx \frac{1}{k}$	$\approx k^{1.5}$
[Gopi et al. '21]	$\approx O(1)$	$\approx \frac{1}{k^{0.5}}$	$\approx k^{0.5}$
This work	Stage 1	$\approx \frac{1}{k^{0.25}}$	$\approx \frac{1}{k^{0.5}}$
	Stage 2	$\approx O(1)$	$\approx \frac{1}{k^{0.25}}$

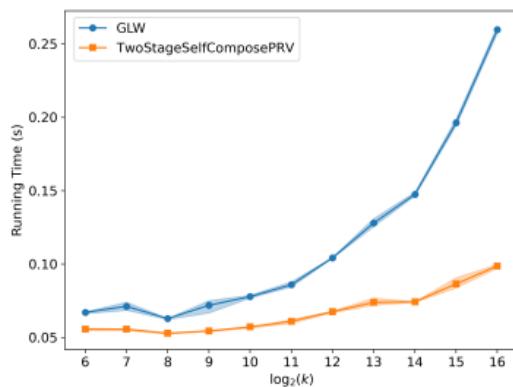
Recursively with $O(\log k)$ stages, the running time is $\log^{O(1)}(k)$.



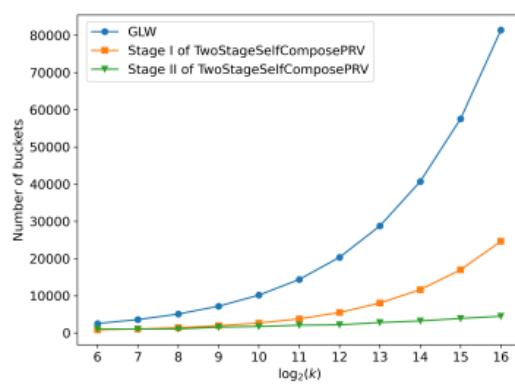
Evaluation of Two-Stage Algorithm

DP-SGD application : Compositions of Poisson subsampled Gaussian mechanism

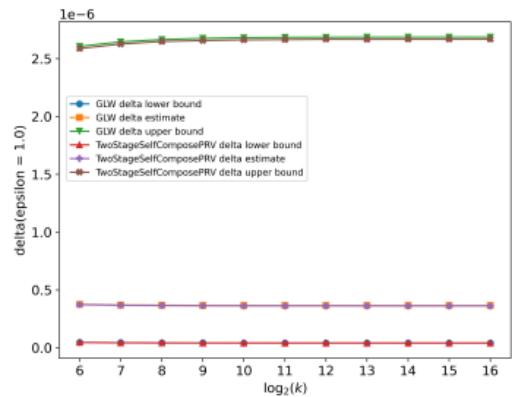
Comparison against [Gopi et al. '21]



Running Times



Number of Buckets



Delta Estimates

Summary & Future Directions

Summary:

- ▶ Evolving discretization can speed up privacy accounting with privacy random variables.

Summary & Future Directions

Summary:

- ▶ Evolving discretization can speed up privacy accounting with privacy random variables.

Future Directions:

- ▶ Make the recursive algorithm practical, by tightening parameters.
- ▶ Make heterogeneous composition more practical in the case where mechanisms have very different privacy profiles

Summary & Future Directions

Summary:

- ▶ Evolving discretization can speed up privacy accounting with privacy random variables.

Future Directions:

- ▶ Make the recursive algorithm practical, by tightening parameters.
- ▶ Make heterogeneous composition more practical in the case where mechanisms have very different privacy profiles

Thanks!