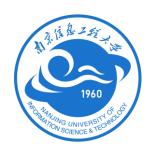


Thirty-ninth International Conference on Machine Learning

Gradient-Free Method for Heavily Constrained Nonconvex Optimization

Wanli Shi 12 Hongchang Gao 3 Bin Gu 12

¹Nanjing University of Information Science and Technology, Jiangsu, China ²MBZUAI, Abu Dhabi, UAE ³Department of Computer and Information Sciences, Temple University, PA, USA. Correspondence to: Bin Gu <jsgubin@gmail.com>.



Thirty-ninth International Conference on Machine Learning

Outline

- Problem setting
- Related works
- Proposed method and algorithm
- Theoretical results
- Experiments

Problem setting

We consider the following problem

$$\min_{\boldsymbol{w}} f_0(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^n \ell_i(\boldsymbol{w}),$$

$$s.t. f_j(\boldsymbol{w}) \le 0, \ j = 1, \dots, m,$$

- $f_0(\cdot)$ is a non-convex and white/black-box function
- $f_i(\cdot)$ is non-convex/convex and white/black-box function

Examples

- 1. Classification with pairwise constraints.
- 2. Tuning the average performance of the policy under multiple scenarios and ensuring the performance of each scenario.
- 3. Optimizing the control policy under performance and safety constraints.
- 4. ...

Related works

Table 1: Representative zeroth order methods for constrained optimization problems, where N/C means nonconvex/convex, W/B means white/black-box function, and the last column shows the size of the constraints.

Framework	Algorthm	Reference	Objective	Constraints	Size
Frank-Wolfe	ZOSCGD	(Balasubramanian & Ghadimi, 2018)	N/C	C W	Small
	FZFW FZCGS FCGS	(Gao & Huang, 2020)	N/C	C W	Small
	Acc-SZOFW*	(Huang et al., 2020b)	N/C	C W	Small
Projected	ZOPSGD	(Liu et al., 2018c)	N/C	C W	Small
	AccZOMDA	(Huang et al., 2020a)	N/C	C W	Small
Penalty	DSZOG	Ours	N/C	N/C W/B	Large

 Reformulate the problem as the following minimax problem over a probability distribution,

$$\min_{\boldsymbol{w}} \max_{\boldsymbol{p} \in \Delta^m} \mathcal{L}(\boldsymbol{w}, \boldsymbol{p}) = f_0(\boldsymbol{w}) + \beta \varphi(\boldsymbol{w}, \boldsymbol{p}) - \frac{\lambda}{2} \|\boldsymbol{p}\|_2^2, \quad (2)$$

where
$$\beta > 0$$
, $\lambda > 0$, $\varphi(\mathbf{w}, \mathbf{p}) = \sum_{j=1}^{m} p_j \phi_j(\mathbf{w})$, $\phi_j(\mathbf{w}) = \left(\max\{f_j(\mathbf{w}), 0\} \right)^2$, $\Delta^m \coloneqq \{\mathbf{p} | \sum_{j=1}^{d} p_j = 1$, $0 \le p_j \le 1\}$.

• Alternately update $oldsymbol{w}$ and $oldsymbol{p}$ with stochastic zeroth-order method.

• Sample ℓ_i uniformly, and f_j according to p, and calculate their stochastic zeroth-order gradient w.r.t w,

$$G_{\mu}^{f}(\boldsymbol{w}_{t}, \ell_{i}, \boldsymbol{u}) = \frac{\ell_{i}(\boldsymbol{w}_{t} + \mu \boldsymbol{u}) - \ell_{i}(\boldsymbol{w}_{t})}{\mu} \boldsymbol{u},$$
(3)

$$G^{\varphi}_{\mu}(\boldsymbol{w}_{t},\boldsymbol{p},f_{j},\boldsymbol{u}) = \frac{\phi_{j}(\boldsymbol{w}_{t} + \mu\boldsymbol{u}) - \phi_{j}(\boldsymbol{w}_{t})}{\mu}\boldsymbol{u}, \quad (4)$$

where $\mu > 0$ and $u \sim N(0,1_d)$.

• Obtain the stochastic zeroth-order gradient of \mathcal{L} w.r.t \boldsymbol{w} ,

$$G_{\mu}^{\mathcal{L}}(\boldsymbol{w}_{t},\boldsymbol{p}_{t},\ell_{i},f_{j},\boldsymbol{u})=G_{\mu}^{f}(\boldsymbol{w}_{t},\ell_{i},\boldsymbol{u})+\beta G_{\mu}^{\varphi}(\boldsymbol{w}_{t},\boldsymbol{p}_{t},f_{j},\boldsymbol{u}).$$
(5)

• Sample f_i uniformly, and calculate the stochastic gradient w.r.t $oldsymbol{p}$,

$$H(\boldsymbol{w}_t, \boldsymbol{p}_t, f_j) = \beta m \boldsymbol{e}_j \phi_j(\boldsymbol{w}_t) - \lambda \boldsymbol{p}_t, \tag{8}$$

• Sample a *batch* of l_i , f_j , and u_k to reduce the variance

$$G_{\mu}^{\mathcal{L}}(\boldsymbol{w}_{t}, \boldsymbol{p}_{t}, \ell_{\mathcal{M}_{1}}, f_{\mathcal{M}_{2}}, \boldsymbol{u}_{[q]}) = \frac{1}{q|\mathcal{M}_{1}|} \sum_{i \in \mathcal{M}_{1}} \sum_{k=1}^{q} G_{\mu}^{f}(\boldsymbol{w}_{t}, \ell_{i}, \boldsymbol{u}_{k}) + \frac{\beta}{q|\mathcal{M}_{2}|} \sum_{j \in \mathcal{M}_{2}} \sum_{k=1}^{q} G_{\mu}^{\varphi}(\boldsymbol{w}_{t}, \boldsymbol{p}_{t}, f_{j}, \boldsymbol{u}_{k}),$$
(6)

$$H(\boldsymbol{w}_t, \boldsymbol{p}_t, f_{\mathcal{M}_3}) = \frac{\beta m}{|\mathcal{M}_3|} \sum_{j \in \mathcal{M}_3} \boldsymbol{e}_j \phi_j(\boldsymbol{w}_t) - \lambda \boldsymbol{p}_t. \quad (9)$$

where $M_1 \subseteq [n]$, $M_2 \subseteq [m]$, $M_3 \subseteq [m]$ and q > 0.

Using momentum methods and adaptive step size to

$$\boldsymbol{z}_{\boldsymbol{w}}^{t+1} = (1-b)\boldsymbol{z}_{\boldsymbol{w}}^{t} + bG_{\mu}^{\mathcal{L}}(\boldsymbol{w}_{t+1}, \boldsymbol{p}_{t+1}, \ell_{\mathcal{M}_{1}}, f_{\mathcal{M}_{2}}, \boldsymbol{u}_{[q]}),$$
(11)

$$\boldsymbol{z}_{\boldsymbol{p}}^{t+1} = (1-b)\boldsymbol{z}_{\boldsymbol{p}}^t + bH(\boldsymbol{w}_{t+1}, \boldsymbol{p}_{t+1}, f_{\mathcal{M}_3}),$$
 (12)

$$w_{t+1} = w_t - \eta_w \frac{z_w^t}{\sqrt{\|z_w^t\|_2 + c}},$$
 (13)

$$\hat{\boldsymbol{p}}_{t+1} = \mathcal{P}_{\Delta^m}(\boldsymbol{p}_t + \eta_{\boldsymbol{p}} \frac{\boldsymbol{z}_{\boldsymbol{p}}^t}{\sqrt{\|\boldsymbol{z}_{\boldsymbol{p}}^t\|_2 + c}}). \tag{14}$$

where $p_{t+1} = (1-a)p_t + a\hat{p}_{t+1}$, and $P_{\Delta}^m(\cdot)$ denotes the projection operator.

Algorithm

Algorithm 1 Doubly Stochastic Zeroth-order Gradient (DSZOG).

Input:
$$T$$
, $|\mathcal{M}_1|$, $|\mathcal{M}_2|$, $|\mathcal{M}_3|$, $\beta \ge 1$, q , μ , $\lambda = 1e - 6$, $b \in (0,1)$, $c = 1e - 8$, $a \in (0,1)$, η_w and η_p .

Output: w_T .

- 1: Initialize w_1 .
- 2: Initialize $p_1 = p^*(w_1)$ by solving the strongly concave problem.
- 3: Initialize $\boldsymbol{z}_{\boldsymbol{w}}^1 = G_{\mu}^{\mathcal{L}}(\boldsymbol{w}_1, \boldsymbol{p}_1, \ell_{\mathcal{M}_1}, f_{\mathcal{M}_2}, \boldsymbol{u}_{[q]})$ and $\boldsymbol{z}_{\boldsymbol{p}}^1 = H(\boldsymbol{w}_1, \boldsymbol{p}_1, f_{\mathcal{M}_3})$. 4: for $t = 1, \cdots, T$ do

5:
$$w_{t+1} = w_t - \eta_w \frac{z_w^t}{\sqrt{\|z_w^t\|_2} + c}$$
.

6:
$$\hat{m{p}}_{t+1} = \mathcal{P}_{\Delta^m}(m{p}_t + \eta_{m{p}} \frac{m{z}_{m{p}}^t}{\sqrt{\|m{z}_{m{p}}^t\|_2 + c}}).$$

- $p_{t+1} = (1-a)p_t + a\hat{p}_{t+1}.$
- Randomly sample $u_1, \dots, u_q \sim \mathcal{N}(0, \mathbf{1}_d)$.
- Randomly sample a index set $\mathcal{M}_1 \subseteq [n]$ of ℓ_i .
- Sample a constraint index set $\mathcal{M}_2 \sim p_{t+1} \subseteq [m]$.
- Randomly sample a constraint index set \mathcal{M}_3 .

12: Calculate
$$G^{\mathcal{L}}_{\mu}(w_{t+1}, p_{t+1}, \ell_{\mathcal{M}_1}, f_{\mathcal{M}_2}, u_{[q]}) = \frac{1}{q|\mathcal{M}_1|} \sum_{i \in \mathcal{M}_1} \sum_{k=1}^q G^f_{\mu}(w_{t+1}, \ell_i, u_k) + \frac{\beta}{q|\mathcal{M}_2|} \sum_{j \in \mathcal{M}_2} \sum_{k=1}^q G^{\varphi}_{\mu}(w_{t+1}, p_{t+1}, f_j, u_k).$$

13: Calculate
$$H(w_{t+1}, p_{t+1}, f_{\mathcal{M}_3}) = \frac{\beta m}{|\mathcal{M}_3|} \sum_{j \in \mathcal{M}_3} e_j \phi_j(w_{t+1}) - \lambda p_{t+1}$$
.

14:
$$z_{\boldsymbol{w}}^{t+1} = (1-b)z_{\boldsymbol{w}}^t + bG_{\mu}^{\mathcal{L}}(w_{t+1}, p_{t+1}, \ell_{\mathcal{M}_1}, f_{\mathcal{M}_2}, u_{[q]}).$$

- 15: $z_{\mathbf{p}}^{t+1} = (1-b)z_{\mathbf{p}}^t + bH(w_{t+1}, p_{t+1}, f_{\mathcal{M}_3}).$
- 16: **end for**

Convergence analysis

$$\min_{\boldsymbol{w}} \left\{ g(\boldsymbol{w}) := \max_{\boldsymbol{p} \in \Delta^m} \mathcal{L}(\boldsymbol{w}, \boldsymbol{p}) = \mathcal{L}(\boldsymbol{w}, \boldsymbol{p}^*(\boldsymbol{w})) \right\}, \quad (21)$$

Theorem 5.14. Under Assumptions 5.1, 5.9 and 5.10, if
$$a \in (0,1]$$
, $p^*(w_1) = p_1$, $z_p^1 = H(w_t, p_t, f_{\mathcal{M}_3})$, $z_w^1 = G_\mu^{\mathcal{L}}(w_t, p_t, \ell_{\mathcal{M}_1}, f_{\mathcal{M}_2}, u_{[q]})$, $0 < \eta_p \le \min\{\frac{1}{3c_{2,l}L}, \frac{b^2}{\tau a^2 c_{2,l}}, \frac{\tau b^2}{32L^2 a^2 c_{2,l}}, 1\}$, $0 < \eta_w^2 \le \min\{\frac{c_{1,l}^2}{4Lc_{1,u}^4}, \frac{b^2}{4c_{1,u}^2L^2}, \frac{\tau^2 a^2 \eta_p^2 c_{2,l}^2}{128L_g^2L^2 c_{1,u}}, \frac{\tau^2 b^2}{128L^4 c_{1,u}^2}, 1\}$, $\mu \le \frac{\epsilon}{L(d+3)^{3/2}}$, $0 < b \le \min\{\frac{\epsilon^2}{2\sigma_1^2}, \frac{\tau^2 \epsilon^2}{64\sigma_2^2L^2}, 1\}$ and $T \ge \max\{\frac{2(g(w_1) - g(w_T))}{\epsilon^2 \eta_w c_{1,l}}, \frac{2\sigma_1^2}{\epsilon^2 b}, \frac{64\sigma_2^2L^2}{\epsilon^2 \tau^2 b}\}$, we have
$$\frac{1}{T} \mathbb{E}[\sum_{t=1}^T \|\nabla g(w_t)\|_2^2] \le \epsilon^2. \tag{22}$$

Experimental results

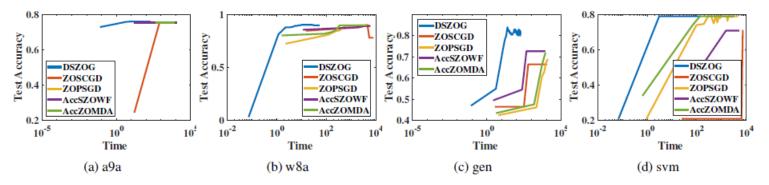


Figure 1: Test accuracy against training time of all the methods in classification with pairwise constraints (We stop the algorithms if the training time is more than 10000 seconds).

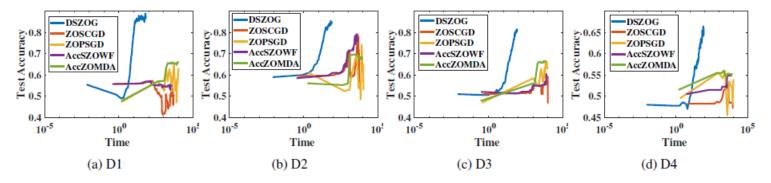


Figure 2: Test accuracy against training time of all the methods in classification with fairness constraints (We stop the algorithms if the training time is more than 10000 seconds).

Thank you!