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Motivations: MFG + RL?

e Mean Field Game (MFG) for Multi-agent reinforcement learning (MARL)

o Efficiently approximate games with very large population of agents

o Goal: Scale up MARL in terms of number of agents

e Reinforcement learning (RL) for MFG

o  RL has been successful at solving very complex optimal control problems

o Goal: Scale up MFGs in terms of model complexity



Mean Field Approximation

Where should | put my towel?

e Continuum of infinitesimal players
Mean field o Homogeneity
o  Symmetry
e Mean Field Nash equilibrium:

o Representative player

o Population u (mean field)

—— Simpler representation

Density of people

around me —> Approximate equilibrium for finite games

[Image credit: Unsplash]



Mean Field Game (MFG)

Mean Field Nash Equilibrium:
e Individual optimization: Best response against the population
’\ J(m, u*) sJ(zx*, u*) for all policies &
e Population consistency: Everyone uses x*:

p* = distribution induced by x*




Learning in MFGs: basic approaches

e Basic idea: iteratively

o Given the mean field u, update the policy &
m Best response against the current population distribution
m  Greedy improvement after evaluating the previous policy

o Given policy 7, update the mean field u
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Learning in MFGs: basic approaches

e Basic idea: iteratively

o Given the mean field u, update the policy &
m Best response against the current population distribution
m  Greedy improvement after evaluating the previous policy

o Given policy 7, update the mean field u

e Reinforcement Learning can be used for the policy update

o To compute an optimal policy or to evaluate a policy

o MDP parameterized by u

e Issue: lack of convergence in many cases (oscillations, ...)



Learning in MFGs: regularization

e Improvements:

o  Averaging past policies or mean fields (e.g., exponential smoothing, ...)
o  Regularizing the policies (e.g., Tt = softmax(Q) instead of 1t = argmax(Q) )

o Regularizing the rewards (e.g., entropic regularization, ...)

e Two typical examples:

o Fictitious Play (FP): fixed point iterations & average past policies / mean fields

o  Online Mirror Descent (OMD): policy evaluation iterations & sum Q-values & policy regu.
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Learning in MFGs: regularization

e Improvements:

o  Averaging past policies or mean fields (e.g., exponential smoothing, ...)
o Regularizing the policies (e.g., softmax instead of argmax)

o Regularizing the rewards (e.g., entropic regularization, ...)

e Two typical examples:

o Fictitious Play (FP): fixed point iterations & average past policies / mean fields

o Online Mirror Descent (OMD): policy evaluation iterations & sum Q-values & policy regu.

e Question: How to do this with deep neural networks?
(More generally: how to sum two parameterized functions that depends non-linearly on the parameters?)

e Our contribution: Two scalable algorithms: D-AFP & D-MOMD
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Algorithm 1: Deep Average-network Fictitious Play

Algorithm 1: D-AFP

1: Initialize an empty reservoir buffer M g, for supervised learning of average policy

2: Initialize parameters §°

3: fork=1,...,Kdo

4 1 Distribution:(generate ii* with Tz )

5:  2.BR: Train(7y« against i~ )e.g. using DQN

6:  Collect Nggmpies state-action using 7y« and add them to Mgy,

7. 3. Average policy:Update 75, by adjusting 6* (through gradient descent) to minimize:

L(0) = E(s,0)oms,, [—1og (T5(als))],

where 75 is the neural net policy with parameters 0
8: end for
9: Return i, 5%

Builds upon Neural-Fictitious Self Play [Heinrich & Silver, 2016]
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Algorithm 2: Deep Munchausen Online Mirror Descent

Algorithm 2: D-MOMD

Input: Munchausen parameters 7 and «; numbers of OMD iterations K and DQN estimation iterations L
Output: cumulated @ value function, policy 7
Initialize the parameters §°
Set 7%(a|(n, z)) = softmax(%@o‘)(("a z), )) (a)
fork=1,...,Kdo
1. Distribution: Generate 1* with 75~1)
2. Value function: Initialize 6"
for/=1,...,Ldo

N
Sample a minibatch of Np transitions: {((ni,mi),ai, Tni (Ziy @iy uE ), (ns + l,m;))} ? with n; < Np,
& i=1

%0 =R o th B WD =

o

) ~ pp, (-|z;, a;, uk ) and a; is chosen by an e—greedy policy based on Qy«
10: Update §* with one gradient step of:

2
OHNBZ |Q9 (nuxl) az)_Ti
where T; is the target defined above
11:  end for
12: 3. Policy: for all n, z, a, let

(‘7*(al(n, ) = softmax( 1 Qg+ ((n,z),-) ) (a))
13: end for
14: Return Qyx , wX

Builds upon Munchausen trick [Vieillard, Pietquin & Geist, 2020]
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Numerical Experiments

e Implementation: OpenSpiel [Lanctot et al., 2019]
o Open source
o  Wide range of games (including MFGs) and algorithms

e 5 Models: typical examples of MFGs are illustrated:
SIS

Linear-Quadratic

Exploration

Crowd modeling with congestion

Multi-population chasing

O O O O O

e 3 Baselines: D-AFP and D-MOMD are compared with:

o  Deep Fixed Point (D-FP)
o  Deep Policy lteration (D-PI)
o  Deep Boltzmann lteration (D-Bl) from [Cui & Koeppl, 2021]
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Numerical Example
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Main take-away:

e D-AFP and D-MOMD converge even
when other baselines fail to converge

e D-MOMD converges faster
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Thank you for your attention

Meet me at Poster Session 1, 6:30pm
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