Scalable Deep Reinforcement Learning
Algorithms for Mean Field Games

Sarah Perrin

sarah.perrin@inria.fr

Joint work with: Mathieu Lauriére, Sertan Girgin, Paul Muller, Ayush Jain,
Theophile Cabannes, Georgios Piliouras, Julien Perolat, Romuald Elie,
Olivier Pietquin, Matthieu Geist

39" International Conference on Machine Learning

Ve Université
Y 58 EEEY de Lille Google Research O DeepMind

mailto:mathieu.lauriere@nyu.edu

Motivations: MFG + RL?

e Mean Field Game (MFG) for Multi-agent reinforcement learning (MARL)

o Efficiently approximate games with very large population of agents

o Goal: Scale up MARL in terms of number of agents

e Reinforcement learning (RL) for MFG

o RL has been successful at solving very complex optimal control problems

o Goal: Scale up MFGs in terms of model complexity

Mean Field Approximation

Where should | put my towel?

e Continuum of infinitesimal players
Mean field o Homogeneity
o Symmetry
e Mean Field Nash equilibrium:

o Representative player

o Population u (mean field)

—— Simpler representation

Density of people

around me —> Approximate equilibrium for finite games

[Image credit: Unsplash]

Mean Field Game (MFG)

Mean Field Nash Equilibrium:
e Individual optimization: Best response against the population
’\ J(m, u*) sJ(zx*, u*) for all policies &
e Population consistency: Everyone uses x*:

p* = distribution induced by x*

Learning in MFGs: basic approaches

e Basic idea: iteratively

o Given the mean field u, update the policy &
m Best response against the current population distribution
m Greedy improvement after evaluating the previous policy

o Given policy 7, update the mean field u

Learning in MFGs: basic approaches

e Basic idea: iteratively

o Given the mean field u, update the policy &
m Best response against the current population distribution
m Greedy improvement after evaluating the previous policy

o Given policy 7, update the mean field u

e Reinforcement Learning can be used for the policy update

o To compute an optimal policy or to evaluate a policy

o MDP parameterized by u

Learning in MFGs: basic approaches

e Basic idea: iteratively

o Given the mean field u, update the policy &
m Best response against the current population distribution
m Greedy improvement after evaluating the previous policy

o Given policy 7, update the mean field u

e Reinforcement Learning can be used for the policy update

o To compute an optimal policy or to evaluate a policy

o MDP parameterized by u

e Issue: lack of convergence in many cases (oscillations, ...)

Learning in MFGs: regularization

e Improvements:

o Averaging past policies or mean fields (e.g., exponential smoothing, ...)
o Regularizing the policies (e.g., Tt = softmax(Q) instead of 1t = argmax(Q))

o Regularizing the rewards (e.g., entropic regularization, ...)

e Two typical examples:

o Fictitious Play (FP): fixed point iterations & average past policies / mean fields

o Online Mirror Descent (OMD): policy evaluation iterations & sum Q-values & policy regu.

Learning in MFGs: regularization

e Improvements:

o Averaging past policies or mean fields (e.g., exponential smoothing, ...)
o Regularizing the policies (e.g., softmax instead of argmax)

o Regularizing the rewards (e.g., entropic regularization, ...)

e Two typical examples:

o Fictitious Play (FP): fixed point iterations & average past policies / mean fields

o Online Mirror Descent (OMD): policy evaluation iterations & sum Q-values & policy regu.

e Question: How to do this with deep neural networks?
(More generally: how to sum two parameterized functions that depends non-linearly on the parameters?)

Learning in MFGs: regularization

e Improvements:

o Averaging past policies or mean fields (e.g., exponential smoothing, ...)
o Regularizing the policies (e.g., softmax instead of argmax)

o Regularizing the rewards (e.g., entropic regularization, ...)

e Two typical examples:

o Fictitious Play (FP): fixed point iterations & average past policies / mean fields

o Online Mirror Descent (OMD): policy evaluation iterations & sum Q-values & policy regu.

e Question: How to do this with deep neural networks?
(More generally: how to sum two parameterized functions that depends non-linearly on the parameters?)

e Our contribution: Two scalable algorithms: D-AFP & D-MOMD

10

Algorithm 1: Deep Average-network Fictitious Play

Algorithm 1: D-AFP

1: Initialize an empty reservoir buffer M g, for supervised learning of average policy

2: Initialize parameters §°

3: fork=1,...,Kdo

4 1 Distribution:(generate ii* with Tz)

5: 2.BR: Train(7y« against i~)e.g. using DQN

6: Collect Nggmpies state-action using 7y« and add them to Mgy,

7. 3. Average policy:Update 75, by adjusting 6* (through gradient descent) to minimize:

L(0) = E(s,0)oms,, [—1og (T5(als))],

where 75 is the neural net policy with parameters 0
8: end for
9: Return i, 5%

Builds upon Neural-Fictitious Self Play [Heinrich & Silver, 2016]

11

Algorithm 2: Deep Munchausen Online Mirror Descent

Algorithm 2: D-MOMD

Input: Munchausen parameters 7 and «; numbers of OMD iterations K and DQN estimation iterations L
Output: cumulated @ value function, policy 7
Initialize the parameters §°
Set 7%(a|(n, z)) = softmax(%@o‘)(("a z),)) (a)
fork=1,...,Kdo
1. Distribution: Generate 1* with 75~1)
2. Value function: Initialize 6"
for/=1,...,Ldo

N
Sample a minibatch of Np transitions: {((ni,mi),ai, Tni (Ziy @iy uE), (ns + l,m;))} ? with n; < Np,
& i=1

%0 =R o th B WD =

o

) ~ pp, (-|z;, a;, uk) and a; is chosen by an e—greedy policy based on Qy«
10: Update §* with one gradient step of:

2
OHNBZ |Q9 (nuxl) az)_Ti
where T; is the target defined above
11: end for
12: 3. Policy: for all n, z, a, let

(‘7*(al(n,) = softmax(1 Qg+ ((n,z),-)) (a))
13: end for
14: Return Qyx , wX

Builds upon Munchausen trick [Vieillard, Pietquin & Geist, 2020]

12

Numerical Experiments

e Implementation: OpenSpiel [Lanctot et al., 2019]
o Open source
o Wide range of games (including MFGs) and algorithms

e 5 Models: typical examples of MFGs are illustrated:
SIS

Linear-Quadratic

Exploration

Crowd modeling with congestion

Multi-population chasing

O O O O O

e 3 Baselines: D-AFP and D-MOMD are compared with:

o Deep Fixed Point (D-FP)
o Deep Policy lteration (D-PI)
o Deep Boltzmann lteration (D-Bl) from [Cui & Koeppl, 2021]

13

Numerical Example

1.0

10 -

15+

201

exploitability
=
<

0 50000 100000 150000 200000 250000 300000
step

0.030 4

0.025

0.020

0.015

0.010

0.005

0.000

0.0200 0.0200
0.0175 | 0.0175
0.0150 - 0.0150
0.0125 0.0125
0.0100 | 0.0100
0.0075 1 0.0075
0.0050 0.0050

0 10 20 L 0 10 20 L0023
0.0000

Main take-away:

e D-AFP and D-MOMD converge even
when other baselines fail to converge

e D-MOMD converges faster

14

Thank you for your attention

Meet me at Poster Session 1, 6:30pm

15

