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Cooperative Multi-Agent Reinforcement Learning

* Distributed multi-agent systems with a shared reward
* Each agent has an partial observation
° Centralized training with decentralized execution has shown great success

* Agents still often fail to cooperative in highly stochastic environments

Drone Swarm Control Cooperation Game Network Optimization



Risk-Sensitive Reinforcement Learning

* Risk rather than simple expectations for return distribution caused by state transitions,
rewards, and actions

* Risk-sensitive policies act with a risk measure, such as variance
* Main goal
-« Applying risk-sensitive technique to multi-agent reinforcement learning to learn
more robust policies against various factors of uncertainty



Two Types of Uncertainty in MARL

* Cooperative uncertainty stems from how the agents cannot communicate with each

other

* Environmental uncertainty is caused by stochastic transition and the rewarding

mechanism of the environment
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DRIMA: Disentangled Risk-Sensitive MARL

* True action-value estimator which learns the joint action-value captures
environmental risk with a risk level wgpy

* Transformed action-value estimator which learns an action-value guided by the true-

action value estimator while capturing cooperative risk with a risk level w,gt
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Results: Explorative Scenarios

° Question 1: Are there scenarios that existing methods cannot solve? Can DRIMA solve
them through disentangling sources of risk?

° Explorative: Agents behave exploratory in the training phase

* DRIMA obtains significant gains, where separating cooperative risk and environmental
risk is critical
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Results: Dilemmatic Scenarios

° Question 1: Are there scenarios that existing methods cannot solve? Can DRIMA solve

them through disentangling sources of risk?

* Dilemmatic: A social dilemma exists in which agents can learn local optimum policies

* DRIMA also obtains significant gain
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Results: Noisy Scenarios

° Question 2: Can DRIMA achieve robust performance through risk sensitivity control in
the presence of noisy agents?

° Noisy: During the test phase, some agents may behave incorrectly

° DRIMA achieves robust and high performance through risk sensitivity control even in
the presence of noisy agents
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Results: Basic Scenarios

* Question 3: Can DRIMA improve sample efficiency and final performance over
baseline methods, even under traditional scenarios?

* Basic: Traditional multi-agent reinforcement learning environment

° DRIMA generally achieves the state-of-the-art performance both sample-efficiency
and asymptotically
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Thank You!



