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Background

• Transformers have achieved remarkable success on a wide range of tasks in NLP. It
can model the relationship between any input tokens. The input consists of a
series of words and sub-words.

Vanilla Transformer: Lou@@ d and susta@@ ined appl@@ ause

• Despite great potential on most of NLP tasks, the Transformer backbones still
have a major shortcoming that it ignores the word-boundary information and other
priors, e.g. phrase-level knowledge.

Example: Lou@@ d and susta@@ ined appl@@ ause

Word-boundary information

Phrase-level information

︸ ︷︷ ︸
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Definition of Scale in NLP

• We redefine the scale from the linguistic perspective in this work (sub-words, words
and phrases).

• Sub-words are the lowest-level scale while the phrases are the highest-level scale.

Example: Loud and sustained applause

BPE: Lou@@ | d | and | susta@@ | ined | appl@@ | ause

Word: Lou@@ d and susta@@ ined appl@@ ause

Phrase: Lou@@ d and susta@@ ined appl@@ ause
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Interactions among Scales

• We establish the relationship among different scales.
▶ We regard a sub-word as an individual (Figure (a), each column), and a word as a

group ((Figure (a), ①-④)).
▶ Intra-group interaction and Inter-group interaction.

Example: Lou@@ d and susta@@ ined appl@@ ause
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UMST

• Class Embedding (CE)

Lou@@ d and susta@@ ined appl@@ ause

1 1 0 1 1 1 1

EMB

CE

EMB
Initialized by a normal distribution, where

σ =
1√
d
, µ = 0 (1)
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UMST

• W-GCN
▶ We adopt W-GCN to model the intra-group interaction:

GCNword = σ(D̃
− 1

2
w ÃwD̃
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w · xWw)
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UMST

• P-GCN
▶ We adopt a down-sampling operation via Gb→w to

generate word-level representation.

▶ We adopt P-GCN via Ap to model the inter-group
interactions:

GCNphrase = σ(D̃
− 1

2
p ÃpD̃
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UMST

• Rectified Self-attention (RSAN)
▶ We fuse the multi-scale information in a

two-branch manner.
▶ To mitigate the gap among different scales:
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′

2 = Gb→w ·ATTN2 · (Gb→w)
T
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Benefits
1) Retain information during transformation.
2) Guarantee the normalization.
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Results of Machine Translation

• Our UMST outperforms Transformer by 0.88 and 0.44 BLEU points on the base
and big configurations, respectively.

• UMST is orthogonal to previous local modeling method e.g. RPR.

Table: Results on the WMT En-De task.

Model Base Big
Param BLEU Param BLEU

Transformer (Vaswani et al., 2017) 65M 27.30 213M 28.40
Scaling NMT (Ott et al., 2018) - - 210M 29.30
DLCL (Wang et al., 2019) 62M 27.30 - -
MUSE (Zhao et al., 2019) - - - 29.90
MG-SA (Hao et al., 2019) 89M 28.28 272M 29.01

Transformer † 65M 27.63 216M 29.31
MUSE† (Zhao et al., 2019) 68M 27.97 233M 29.11
MSMSA† (Guo et al., 2020) 65M 27.57 233M 28.84
TNT† (Han et al., 2021) 83M 28.48 - -
UMST 70M 28.51 242M 29.75
UMST + RPR 70M 28.90 242M 30.15
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Results of Abstractive Summarization

• Similarly, UMST outperforms the standard Transformer by a large margin.
• The model can still attain nearly 1 rouge gains in terms of three metrics when

removing the phrase-level prior knowledge, which demonstrates the essential of
word-boundaries.

Table: Results on the CNN-DailyMail dataset.

Model RG-1 RG-2 RG-L

DynamicConv (Wu et al., 2019) 39.84 16.25 36.73
Bottom-Up (Gehrmann, Deng, and Rush, 2018) 41.22 18.68 38.34
Surface (Liu et al., 2020) 41.00 18.30 37.90
Dman (Fan et al., 2021) 40.98 18.29 37.88

Transformer† 40.55 17.81 37.47
UMST w/o inter-group interactions 41.62 18.65 38.28
UMST 41.82 18.91 38.54

Learning Multiscale Transformer Models for Sequence Generation ICML 2022



Ablation Study

• Removing any module results in an obvious performance degradation.
• GCN is superior to the GAT and Pooling to model the interactions.

Table: Ablation study on the WMT En-De testset.

Model Depth BLEU Depth BLEU

Transformer 6-6 27.63 12-6 28.67
UMST 6-6 28.51 12-6 29.49
w/o class-embedding 6-6 28.39 12-6 28.99
w/o intra-group interactions 6-6 27.87 12-6 failed
w/o inter-group interactions 6-6 28.06 12-6 29.37
replace GCN with pooling 6-6 27.96 12-6 28.89
replace GCN with GAT 6-6 28.11 12-6 failed
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Effect of Encoder Depth and BPE Operations

• UMST beats Transformer under all configurations, attaining almost a 0.76 BLEU
gap in average.

• Sentences are likely to be separated into sub-tokens when a vocabulary gets
smaller.

• The word boundary information is more essential within a small vocabulary, where
UMST can gain more benefits.
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Figure: The comparison of BLEU against different encoder depths and BPE merging operations.
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Visualization
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Thanks!

Thanks for your attention!
Codebase: https://github.com/libeineu/UMST

Our team: https://github.com/NiuTrans
Any questions please contact with libei_neu@outlook.com
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