Learning Multiscale Transformer Models for Sequence Generation

Bei Li¹ Tong Zheng¹ Yi Jing¹ Chengbo Jiao² Tong Xiao^{1,2} Jingbo Zhu^{1,2}

¹School of Computer Science and Engineering, Northeastern University, Shenyang, China ²NiuTrans Research, Shenyang, China

International Conference on Machine Learning, 2022

Background

• Transformers have achieved remarkable success on a wide range of tasks in NLP. It can model the relationship between any input tokens. The input consists of a series of words and sub-words.

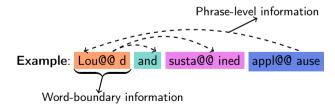
Vanilla Transformer: Lou@@ d and susta@@ ined appl@@ ause

Background

• Transformers have achieved remarkable success on a wide range of tasks in NLP. It can model the relationship between any input tokens. The input consists of a series of words and sub-words.

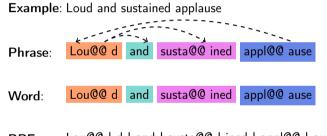
Vanilla Transformer: Lou@@ d and susta@@ ined appl@@ ause

• Despite great potential on most of NLP tasks, the Transformer backbones still have a major shortcoming that it ignores the word-boundary information and other priors, e.g. phrase-level knowledge.



Definition of Scale in NLP

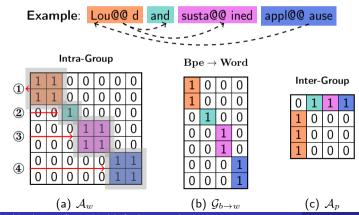
- We redefine the scale from the linguistic perspective in this work (sub-words, words and phrases).
- Sub-words are the lowest-level scale while the phrases are the highest-level scale.



BPE: Lou@@ | d | and | susta@@ | ined | appl@@ | ause

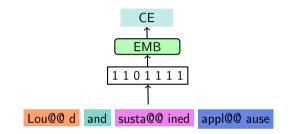
Interactions among Scales

- We establish the relationship among different scales.
 - We regard a sub-word as an individual (Figure (a), each column), and a word as a group ((Figure (a), ①-④)).
 - Intra-group interaction and Inter-group interaction.



Learning Multiscale Transformer Models for Sequence Generation

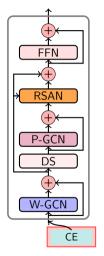
• Class Embedding (CE)



EMB

Initialized by a normal distribution, where

$$\sigma = \frac{1}{\sqrt{d}}, \quad \mu = 0$$



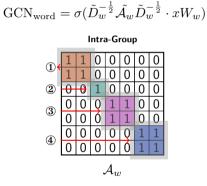
Universal Multiscale Transformer

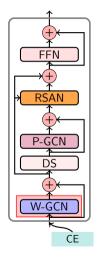
(1)

UMST

• W-GCN

▶ We adopt W-GCN to model the intra-group interaction:



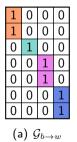


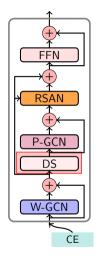
Universal Multiscale Transformer

P-GCN

▶ We adopt a down-sampling operation via $\mathcal{G}_{b \to w}$ to generate word-level representation.

 $\mathbf{Bpe} \to \mathbf{Word}$





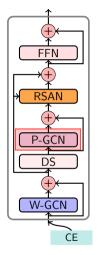
Universal Multiscale Transformer

UMST

- P-GCN
 - We adopt a down-sampling operation via G_{b→w} to generate word-level representation.
 - ► We adopt P-GCN via A_p to model the inter-group interactions:

$$GCN_{phrase} = \sigma(\tilde{D}_p^{-\frac{1}{2}}\tilde{\mathcal{A}}_p\tilde{D}_p^{-\frac{1}{2}}\cdot xW_p)$$

(b) \mathcal{A}_p

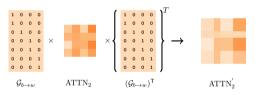


Universal Multiscale Transformer

UMST

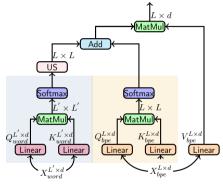
- Rectified Self-attention (RSAN)
 - We fuse the multi-scale information in a two-branch manner.
 - To mitigate the gap among different scales:

 $\operatorname{ATTN}_{2}^{'} = \mathcal{G}_{b \to w} \cdot \operatorname{ATTN}_{2} \cdot (\mathcal{G}_{b \to w})^{\mathsf{T}}$



Benefits

- 1) Retain information during transformation.
- 2) Guarantee the normalization.



RSAN module

Results of Machine Translation

- Our UMST outperforms Transformer by 0.88 and 0.44 BLEU points on the base and big configurations, respectively.
- UMST is orthogonal to previous local modeling method e.g. RPR.

Model	Base		Big	
	Param	BLEU	Param	BLEU
Transformer (Vaswani et al., 2017) Scaling NMT (Ott et al., 2018)	-	-	213M 210M	
DLCL (Wang et al., 2019) MUSE (Zhao et al., 2019) MG-SA (Hao et al., 2019)	62M - 89M	27.30 - 28.28	- 272M	- 29.90 29.01
Transformer † MUSE† (Zhao et al., 2019) MSMSA† (Guo et al., 2020) TNT† (Han et al., 2021) UMST UMST + RPR	65M 68M 65M 83M 70M 70M	27.63 27.97 27.57 28.48 28.51 28.90	233M 233M 242M	29.11

Table: Results on the WMT En-De task.

Learning Multiscale Transformer Models for Sequence Generation

Results of Abstractive Summarization

- Similarly, UMST outperforms the standard Transformer by a large margin.
- The model can still attain nearly 1 rouge gains in terms of three metrics when removing the phrase-level prior knowledge, which demonstrates the essential of word-boundaries.

Model	RG-1	RG-2	RG-L
DynamicConv (Wu et al., 2019) Bottom-Up (Gehrmann, Deng, and Rush, 2018) Surface (Liu et al., 2020) Dman (Fan et al., 2021)	41.22 41.00	16.25 18.68 18.30 18.29	38.34 37.90
Transformer† UMST w/o inter-group interactions UMST	41.62	17.81 18.65 18.91	38.28

Table: Results on the CNN-DailyMail dataset.

Ablation Study

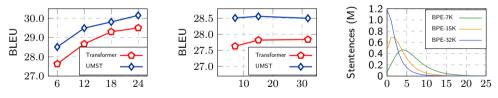
- Removing any module results in an obvious performance degradation.
- GCN is superior to the GAT and Pooling to model the interactions.

Model	Depth	BLEU	Depth	BLEU
Transformer	6-6	27.63	12-6	28.67
UMST	6-6	28.51	12-6	29.49
w/o class-embedding	6-6	28.39	12-6	28.99
w/o intra-group interactions	6-6	27.87	12-6	failed
w/o inter-group interactions	6-6	28.06	12-6	29.37
replace GCN with pooling	6-6	27.96	12-6	28.89
replace GCN with GAT	6-6	28.11	12-6	failed

Table: Ablation study on the WMT En-De testset.

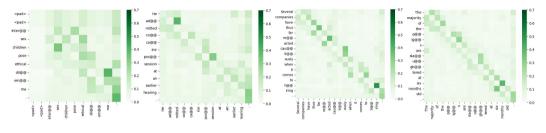
Effect of Encoder Depth and BPE Operations

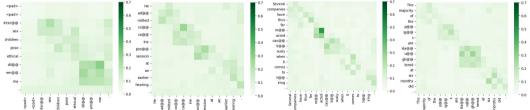
- UMST beats Transformer under all configurations, attaining almost a 0.76 BLEU gap in average.
- Sentences are likely to be separated into sub-tokens when a vocabulary gets smaller.
- The word boundary information is more essential within a small vocabulary, where UMST can gain more benefits.



Encoder Depth Number of BPE (K) Number of BPE **Figure:** The comparison of BLEU against different encoder depths and BPE merging operations.

Visualization





Thanks!

Thanks for your attention! Codebase: https://github.com/libeineu/UMST Our team: https://github.com/NiuTrans Any questions please contact with libei neu@outlook.com

