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Motivation
Ï Pruning methods (e.g.: RIGL [4], WoodFisher [13],

AC/DC [12]) produce accurate unstructured sparse models:
Ï Reduced compute → used to be difficult to utilize in practice

Ï Increasingly advanced software & hardware acceleration
techniques (e.g.: DeepSparse [11], Sputnik [6] & others [3, 1])
achieve better and better real speedups

Ï Complex relationship between sparsity & speedup
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Existing pruning algorithms do not take this into account.
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Methods

Goal: find per-layer target sparsities sℓ that
Ï Maximize model accuracy
Ï While achieving a certain real inference speedup

→ Existing techniques not reliable enough for unstructured sparsity

SPDY: Sparsity Profiles via Dynamic Programming search
Ï Highly efficient dynamic programming algorithm for solving

constrained layer-wise optimization problem
Ï Automatic search process to inject global cross-layer

information into layer-wise problem
Ï Enhancements to the AdaPrune [9] methods for fast &

accurate one-shot pruning
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Experiments: CPU Inference with DeepSparse [11]
Ï Run SPDY once in the beginning to find sparsity profile
Ï Then apply state-of-the-art gradual pruning methods:

AC/DC [12], M-FAC [5], gradual magnitude [14]
Ï ResNet50 [7], MobileNetV1 [8], YOLOv5 [10], BERT [2]
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Figure: Uniform and GMP.
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Figure: Other pruning methods.

Code: https://github.com/IST-DASLab/spdy
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