

Federated Minimax Optimization

Improved Convergence Analyses and Algorithms

Pranay Sharma Postdoc, ECE, Carnegie Mellon University

Rohan Panda¹

Gauri Joshi¹

Pramod K. Varshney²

¹ECE, Carnegie Mellon University ²EECS, Syracuse University, NY NSF grants CCF-2045694 and CNS-2112471.

Federated Learning

Federated Learning

Federated Learning

Distributed learning with

• Infrequent communication with the server

Federated Learning

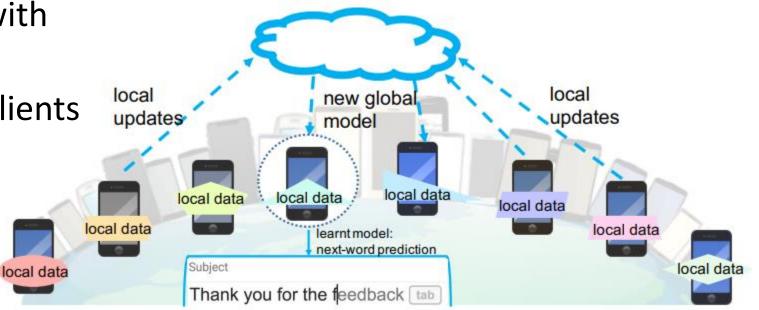
- Infrequent communication with the server
- Heterogeneous data across clients

Federated Learning

- Infrequent communication with the server
- Heterogeneous data across clients
- Client data privacy

Federated Learning

- Infrequent communication with the server
- Heterogeneous data across clients
- Client data privacy



Federated Learning

Distributed learning with

- Infrequent communication with the server
- Heterogeneous data across clients
- Ensures client data privacy

Minimax Optimization $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

Federated Learning

Distributed learning with

- Infrequent communication with the server
- Heterogeneous data across clients
- Ensures client data privacy

Minimax Optimization

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

• GANs, adversarial training of neural networks, reinforcement learning

Federated Learning

Distributed learning with

- Infrequent communication with the server
- Heterogeneous data across clients
- Ensures client data privacy

Minimax Optimization

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

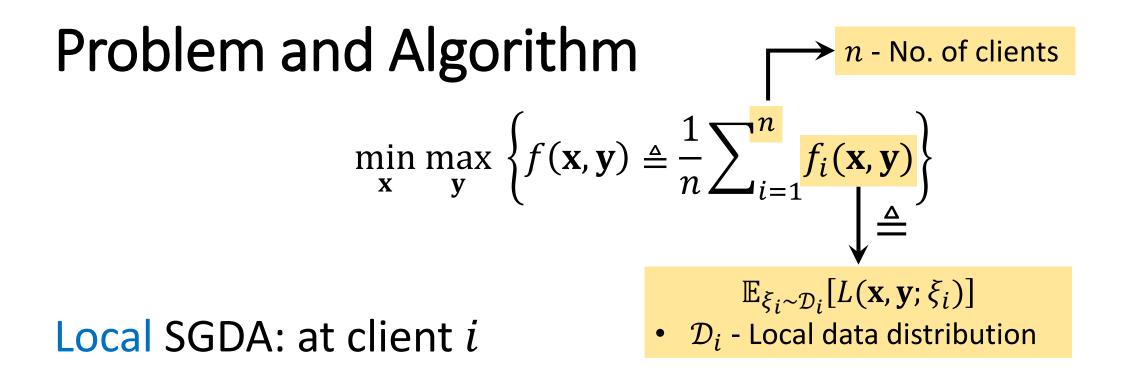
- GANs, adversarial training of neural networks, reinforcement learning
- *f* is often nonconvex in **x**, nonconcave in **y**

Problem and Algorithm

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

Problem and Algorithm $\xrightarrow{n - \text{No. of clients}}$ $\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$

Problem and Algorithm $\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\} \\ \downarrow \triangleq \\ \mathbb{E}_{\xi_i \sim \mathcal{D}_i}[L(\mathbf{x}, \mathbf{y}; \xi_i)] \\ \bullet \quad \mathcal{D}_i \text{- Local data distribution}$



Problem and Algorithm $\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})}{\int_{i=1}^{n} \int_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})}{\int_{i=1}^{n} \int_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})}{\int_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})$

Local SGDA: at client *i* • $\mathbf{x}^{i} \leftarrow \mathbf{x}^{i} - \eta_{x} \widetilde{\nabla}_{\mathbf{x}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$ • $\mathbf{y}^{i} \leftarrow \mathbf{y}^{i} + \eta_{y} \widetilde{\nabla}_{\mathbf{y}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$

- $\mathbb{E}_{\xi_i \sim \mathcal{D}_i}[L(\mathbf{x}, \mathbf{y}; \xi_i)]$
- \mathcal{D}_i Local data distribution

Problem and Algorithm $\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})}{\int_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y})} \right\}$

Local SGDA: at client i• $\mathbf{x}^{i} \leftarrow \mathbf{x}^{i} - \eta_{x} \widetilde{\nabla}_{\mathbf{x}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$ • $\mathbf{y}^{i} \leftarrow \mathbf{y}^{i} + \eta_{y} \widetilde{\nabla}_{\mathbf{y}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$

Infrequent averaging

- $\mathbb{E}_{\xi_i \sim \mathcal{D}_i}[L(\mathbf{x}, \mathbf{y}; \xi_i)]$
- \mathcal{D}_i Local data distribution

Problem and Algorithm $\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{f_i(\mathbf{x}, \mathbf{y})}{\int_{\mathbf{x}} \mathbf{x} \mathbf{y}^i} \right\}$

Local SGDA: at client *i*

• $\mathbf{x}^{i} \leftarrow \mathbf{x}^{i} - \eta_{x} \widetilde{\nabla}_{\mathbf{x}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$ • $\mathbf{y}^{i} \leftarrow \mathbf{y}^{i} + \eta_{y} \widetilde{\nabla}_{\mathbf{y}} f_{i}(\mathbf{x}^{i}, \mathbf{y}^{i})$

Infrequent averaging

- Every au iterations
- Restart with the average

- $\mathbb{E}_{\xi_i \sim \mathcal{D}_i}[L(\mathbf{x}, \mathbf{y}; \xi_i)]$
- \mathcal{D}_i Local data distribution

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}
- ϵ -approximate stationary point

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- ϵ -approximate stationary point
- Sample Complexity:

$$\mathcal{O}\left(\frac{1}{n\epsilon^4}\right)$$
 per node

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- ϵ -approximate stationary point
- Sample Complexity:

$$\mathcal{O}\left(\frac{1}{n\epsilon^4}\right)$$
 per node

- Linear Speedup in *n*
- Optimal in ϵ

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- ϵ -approximate stationary point
- Sample Complexity:

$$\mathcal{O}\left(\frac{1}{n\epsilon^4}\right)$$
 per node

- Linear Speedup in *n*
- Optimal in ϵ
- Communication rounds: $O\left(\frac{1}{\epsilon^3}\right)$

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

 $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}

	Sample Complexity	Communication Rounds	
Lin et al., 2020 $(n = 1)$	$\mathcal{O}(\epsilon^{-4})$	-	

• Needs $\mathcal{O}(\epsilon^{-2})$ batch-size

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

 $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}

	Sample Complexity	Communication Rounds
Lin et al., 2020 $(n = 1)$	$\mathcal{O}(\epsilon^{-4})$	-
Deng et al., 2021 $(n \ge 1)$	$\mathcal{O}\left(\frac{1}{n\epsilon^6}\right)$	$\mathcal{O}\left(\frac{1}{n^{1/4}\epsilon^4}\right)$

• Needs $\mathcal{O}(\epsilon^{-2})$ batch-size

• Suboptimal complexity in ϵ

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

 $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}

	Sample Complexity	Communication Rounds	
Lin et al., 2020 $(n = 1)$	$\mathcal{O}(\epsilon^{-4})$	-	•
Deng et al., 2021 $(n \ge 1)$	$\mathcal{O}\left(\frac{1}{n\epsilon^6}\right)$	$\mathcal{O}\left(\frac{1}{n^{1/4}\epsilon^4}\right)$	•
Our Work $(n \ge 1)$	$\mathcal{O}\left(rac{1}{n\epsilon^4} ight)$	$\mathcal{O}\left(\frac{1}{\epsilon^3}\right)$	•

Needs $\mathcal{O}(\epsilon^{-2})$ batch-size

- Suboptimal complexity in ϵ
- Optimal in ϵ

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

 $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}

	Sample Complexity	Communication Rounds	
Lin et al., 2020 $(n = 1)$	$\mathcal{O}(\epsilon^{-4})$	-	
Deng et al., 2021 (n ≥ 1)	$\mathcal{O}\left(\frac{1}{n\epsilon^6}\right)$	$\mathcal{O}\left(\frac{1}{n^{1/4}\epsilon^4}\right)$	•
Our Work $(n \ge 1)$	$\mathcal{O}\left(\frac{1}{n\epsilon^4}\right)$	$\mathcal{O}\left(\frac{1}{\epsilon^3}\right)$	

Needs $\mathcal{O}(\epsilon^{-2})$ batch-size

- Suboptimal complexity in ϵ
- Optimal in ϵ
- $\mathcal{O}(1)$ batch-size

 $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}, \mathbf{y})$

 $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , strongly concave in \mathbf{y}

	Sample Complexity	Communication Rounds	
Lin et al., 2020 $(n = 1)$	$\mathcal{O}(\epsilon^{-4})$	-	
Deng et al., 2021 (n ≥ 1)	$\mathcal{O}\left(\frac{1}{n\epsilon^6}\right)$	$\mathcal{O}\left(\frac{1}{n^{1/4}\epsilon^4}\right)$	
Our Work $(n \ge 1)$	$\mathcal{O}\left(\frac{1}{n\epsilon^4}\right)$	$\mathcal{O}\left(\frac{1}{\epsilon^3}\right)$	

Needs $\mathcal{O}(\epsilon^{-2})$ batch-size

- Suboptimal complexity in ϵ
- Optimal in ϵ
- $\mathcal{O}(1)$ batch-size
- Linear speedup in *n*

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x}
- 1. strongly concave in **y**
- 2. PL in **y**
- 3. Concave in y
- 4. 1-Point-Concave in y

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x}
- 1. strongly concave in \mathbf{y}
- 2. PL in **y**
- 3. Concave in y
- 4. 1-Point-Concave in y

• Local update algorithms

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x}
- 1. strongly concave in \mathbf{y}
- 2. PL in **y**
- 3. Concave in y
- 4. 1-Point-Concave in y

- Local update algorithms
- $\mathcal{O}(1)$ batch-size

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is smooth and
- 1. Strongly concave in ${f y}$
- 2. PL in y
- 3. Concave in y
- 4. 1-Point-Concave in y

- Local update algorithms
- $\mathcal{O}(1)$ batch-size
- Optimal/SOTA complexity

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is smooth and
- 1. Strongly concave in ${f y}$
- 2. PL in y
- 3. Concave in y
- 4. 1-Point-Concave in y

- Local update algorithms
- $\mathcal{O}(1)$ batch-size
- Optimal/SOTA complexity
- Linear speedup in *n*

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \left\{ f(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}, \mathbf{y}) \right\}$$

- $f(\mathbf{x}, \mathbf{y})$ is smooth and
- 1. Strongly concave in \mathbf{y}
- 2. PL in y
- 3. Concave in y
- 4. 1-Point-Concave in y

- Local update algorithms
- $\mathcal{O}(1)$ batch-size
- Optimal/SOTA complexity
- Linear speedup in n

Poster - Hall E #605