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Introduction Related Work Our Strategy Conclusion

Online Convex Optimization [Zinkevich, 2003]

The Learning Process
1: for t = 1,2, . . . ,T do

2: Learner picks a decision xt from a convex set X
Adversary chooses a convex function ft(·)

3: Learner suffers loss ft(xt) and updates xt

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0

Regret

Regret =
T∑

t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)
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Existing Regret Bounds
Convex Functions [Zinkevich, 2003]

Online Gradient Descent (OGD)

Regret = O
(√

T
)

Strongly Convex Functions [Shalev-Shwartz et al., 2007]

The modulus of strong convexity λ is known
Online Gradient Descent (OGD)

Regret = O
(
logT
λ

)
Exponentially Concave Functions [Hazan et al., 2007]

The modulus of exponential concavity α is known
Online Newton Step (ONS)

Regret = O
(

d logT
α

)
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Problem-dependent Regret Bounds I
Small-loss Bounds

[Srebro et al., 2010, Orabona et al., 2012, Wang et al., 2020b]

Convex, λ-strongly convex, α-exp-concave functions

Regret = O
(√

L∗
T

)
, O

(
1
λ
log L∗

T

)
, O

(
d
α
log L∗

T

)
where L∗

T = minx∈X
∑T

t=1 ft(x)

Reduce to the minimax rates in the worst case, but can be
better when the problem is easy

ADAGRAD [Duchi et al., 2010, Duchi et al., 2011]

Convex, λ-strongly convex functions

Regret = O

 d∑
j=1

∥g1:T ,j∥

 , O

1
λ

d∑
j=1

log ∥g1:T ,j∥


Can be better when the gradients are sparse
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Problem-dependent Regret Bounds II

RMSprop and SC-RMSProp
[Tieleman and Hinton, 2012, Mukkamala and Hein, 2017]

Adam [Kingma and Ba, 2015, Reddi et al., 2018]

SAdam [Wang et al., 2020a]

Gradient-variation Bounds
[Chiang et al., 2012, Yang et al., 2014, Mohri and Yang, 2016]

Convex, λ-strongly convex, α-exp-concave functions

Regret = O
(√

VT

)
, O

(
1
λ
logVT

)
, O

(
d
α
logVT

)
where VT =

∑T
t=1 maxx∈X ∥∇ft(x)−∇ft−1(x)∥2

Can be better if the online functions evolve gradually
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Our Contributions

Limitations of Traditional Algorithms
The applicable algorithms depend on the type of functions
Their hyper-parameters depend on the moduli of strong
convexity and exponential concavity

A Simple yet Universal Strategy for OCO
Handle multiple types of convex functions simultaneously
For strongly convex functions and exp-concave functions, it
inherits the (problem-dependent or independent) regret
bounds of existing algorithms
For general convex functions, it maintains the minimax
optimality and also achieves a small-loss bound
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Universal Algorithms I

Adaptive Online Gradient Descent (AOGD) [Bartlett et al., 2008]

Interpolates between O(
√

T ) regret of general convex
functions and O(logT ) regret of strongly convex functions

It needs to know the modulus of strong convexity
It does not support exp-concave functions

MetaGrad [van Erven and Koolen, 2016]

O(logT ) surrogate losses for exp-concave functions
ℓexp

t ,η (x) = −η(xt − x)⊤gt + η2[(xt − x)⊤gt ]
2

O(d
α logT ) regret for α-exp-concave functions

O(
√

T log logT ) regret bound for general convex functions
It does not support strongly convex functions explicitly
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Universal Algorithms II

Maler [Wang et al., 2019]

O(logT ) surrogate losses for strongly convex functions
ℓstr

t ,η(x) = −η(xt − x)⊤gt + η2G2∥xt − x∥2

1 surrogate loss for general convex functions
ℓcon

t ,η (x) = −η(xt − x)⊤gt + η2G2D2

O( 1
λ logT ) regret for λ-strongly functions

O(d
α logT ) regret for α-exp-concave functions

O(
√

T ) regret bound for general convex functions

UFO [Wang et al., 2020b]

O(logT ) surrogate losses for strongly convex and smooth
functions
1 surrogate loss for convex and smooth functions
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Universal Algorithms III

UFO [Wang et al., 2020b]

Small-loss regret bounds for three types of convex and
smooth functions

Limitations of State-of-the-art Universal Methods (MetaGrad,
Maler, and UFO)

Need to design one surrogate loss for each possible type
of functions
Cannot utilize existing online algorithms to exploit the
structure of the problem instance
Except the small-loss bound, it is unclear how to generate
other problem-dependent regret bounds
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Our Universal Strategy

Follow the framework of “Learning with Expert Advice”
Construct a set of experts for each possible type of
functions (discretizing continuous variables if necessary)
Deploy a meta-algorithm to aggregate their predictions

Novel Ideas
The experts process the original functions
The meta-algorithm uses linearized losses, and yields a
second-order bound with excess losses

T∑
t=1

(ℓt − ℓi
t) = O


√√√√ T∑

t=1

(ℓt − ℓi
t)

2

 , ∀i

ℓt and ℓi
t are losses of S meta-algorithm and i-th expert
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Motivations I
Regret can be decomposed as

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)

=
T∑

t=1

ft(xt)−
T∑

t=1

ft(ut)︸ ︷︷ ︸
:=meta-regret

+
T∑

t=1

ft(ut)− min
x∈X

T∑
t=1

ft(x)︸ ︷︷ ︸
:=expert-regret
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Meta-regret of Strongly Convex Functions
T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤
T∑

t=1

⟨∇ft(xt),xt − ut⟩ −
λ

2

T∑
t=1

∥xt − ut∥2

=
T∑

t=1

(
lt(xt)− lt(ut)

)
− λ

2

T∑
t=1

∥xt − ut∥2

where lt(x) = ⟨∇ft(xt),x − xt⟩
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2
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A negative term appears when using linearized losses
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Motivations II
Consequence of the Second-order Bound of Excess Losses

T∑
t=1

(
lt(xt)− lt(ut)

)
= O


√√√√ T∑

t=1

(
lt(xt)− lt(ut)

)2



= O


√√√√ T∑

t=1

⟨∇ft(xt),xt − ut⟩2

 = O


√√√√G2

T∑
t=1

∥xt − ut∥2


= O

(
G2

λ

)
+

λ

2

T∑
t=1

∥xt − ut∥2

It can exploit the previous negative term

Meta-regret of Strongly Convex Functions
T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) = O
(

G2

λ

)
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t=1

ft(ut) = O
(

G2

λ

)
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The Meta-algorithm—Adapt-ML-Prod [Gaillard et al., 2014]

The loss of the i-th expert E i

ℓi
t =

⟨∇ft(xt),xi
t − xt⟩+ GD

2GD
∈ [0,1]

The loss of the meta-algorithm ℓt =
∑

pi
tℓ

i
t =

1
2

The weight of expert E i

pi
t =

ηi
t−1w i

t−1∑|E|
j=1 η

j
t−1w j

t−1

ηi
t−1 = min

{
1
2
,

√
ln |E|

1 +
∑t−1

s=1(ℓs − ℓi
s)2

}
, t ≥ 1,

w i
t−1 =

(
w i

t−2
(
1 + ηi

t−2(ℓt−1 − ℓi
t−1)

)) ηi
t−1

ηi
t−2 , t ≥ 2

The prediction of the meta-algorithm xt =
∑

pi
tx

i
t
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Experts for Strongly Convex Functions

Candidate Expert-algorithms Astr

OGD for strongly convex functions (SC-OGD)
[Shalev-Shwartz et al., 2007]

ADAGRAD for strongly convex functions [Duchi et al., 2010]

Online extra-gradient descent (OEGD) for strongly convex
and smooth functions [Chiang et al., 2012]

SC-RMSProp [Mukkamala and Hein, 2017]

SAdam [Wang et al., 2020a]

S2OGD for strongly convex and smooth functions
[Wang et al., 2020b]

Candidate Moduli of Strong Convexity Pstr

Pstr =

{
1
T
,

2
T
,
22

T
, · · · , 2N

T

}
, N = ⌈log2 T ⌉
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Theoretical Guarantee for Strongly Convex Functions
Two Standard Assumptions [Zinkevich, 2003]

The gradients of all functions are bounded by G
The diameter of the domain X is bounded by D

Theorem 1

Let R(A, λ̂) be the regret bound of expert E(A, λ̂). If the online
functions are λ-strongly convex with λ ∈ [1/T ,1], USC satisfies

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) = min
A∈Astr

R(A, λ̂) + O
(
log logT

λ

)
where λ̂ ∈ Pstr , and λ̂ ≤ λ ≤ 2λ̂

When both the domain and gradients are bounded, USC
achieves the best of all worlds, up to an additive factor of
O(log logT )
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Theoretical Guarantee for Strongly Convex Functions

An Additional Assumptions [Srebro et al., 2010]

All the online functions are nonnegative, and H-smooth

Corollary 2

If the online functions are λ-strongly convex with λ ∈ [1/T ,1],
T∑

t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) =
(

1
λ

(
min(log L∗

T , logVT ) + log logT
))

L∗
T = minx∈X

∑
ft(x) and VT =

∑
maxx∈X ∥∇ft(x)−∇ft−1(x)∥2

We obtain the best of the small-loss bound and the
gradient-variation bound

The complexity is O(logT ) per iteration
Create an expert E(A, λ̂) for each A ∈ Astr and λ̂ ∈ Pstr
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Experts for Exp-concave Functions

Candidate Expert-algorithms Aexp

Online Newton step (ONS) [Hazan et al., 2007]

ONS for exp-concave and smooth functions
[Orabona et al., 2012]

OEGD for exp-concave and smooth functions
[Chiang et al., 2012]

Candidate Moduli of Exponential Concavity Pexp

Pexp =

{
1
T
,

2
T
,
22

T
, · · · , 2N

T

}
, N = ⌈log2 T ⌉

The additional complexity is also O(logT ) per iteration
Create an expert E(A, α̂) for each A ∈ Aexp and α̂ ∈ Pexp
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Theoretical Guarantee for Exp-concave Functions

Theorem 3
If the online functions are α-exp-concave with α ∈ [1/T ,1],

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) = min
A∈Aexp

R(A, α̂) + O
(
log logT

α

)
where α̂ ∈ Pexp, and α̂ ≤ α ≤ 2α̂

USC also achieves the best of all worlds

Corollary 4
Under the additional assumption,

Regret = O
(

1
α

(
d min(log L∗

T , logVT ) + log logT
))

L∗
T = minx∈X

∑
ft(x) and VT =

∑
maxx∈X ∥∇ft(x)−∇ft−1(x)∥2
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Experts for General Convex Functions

Candidate Expert-algorithms Acon

OGD [Zinkevich, 2003]

ADAGRAD [Duchi et al., 2011]

OEGD for convex and smooth functions [Chiang et al., 2012]

RMSprop [Tieleman and Hinton, 2012]

ADADELTA [Zeiler, 2012]

Adam [Kingma and Ba, 2015]

AO-FTRL [Mohri and Yang, 2016]

SOGD [Zhang et al., 2019]

The additional complexity is O(1) per iteration
Create an expert E(A) for each A ∈ Acon
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Theoretical Guarantee for General Convex Functions
Theorem 5
Let R(A) be the regret bound of expert E(A). We have

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) = min
A∈Acon

R(A) + second-order meta-regret

= min
A∈Acon

R(A) + O
(√

T log logT
)

Sum of the expert-regret and the meta-regret

Corollary 6
Under the additional assumption,

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) = O
(√

L∗
T log logT

)
where L∗

T = minx∈X
∑

ft(x)
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Experimental Setting
Online Linear Classification

ft(x) =
1
m

m∑
i=1

max
{

0,1 − y (i)
t x⊤w(i)

t

}
+

λ

2
∥x∥2

The a9a dataset [Chang and Lin, 2011]

Strongly convex functions (λ = 0.02) and general convex
functions (λ = 0)

Candidate Algorithms in USC
Strongly convex functions: SC-OGD and SAdam
Exp-concave functions: ONS [Hazan et al., 2007]

General convex functions: OGD and Adam

Existing Universal Algorithms
MetaGrad [van Erven and Koolen, 2016] and Maler
[Wang et al., 2019]
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Results for Strongly Convex Functions
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Results for General Convex Functions
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Conclusion and Future Work
A Universal Strategy for OCO (USC)

The experts process the original functions, so that we can
plug in any online solver as a black-box subroutine
The meta-algorithm uses linearized losses, and yields a
second-order bound with excess losses

Advantages of USC
Attains the best of all worlds for strongly convex functions
and exp-concave functions
Attains a small-loss bound for general convex functions

Future Work
Extend to unbounded domains or gradients
Support dynamic regret and adaptive regret
Avoid fixing the value of the time horizon T
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