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Deep Learning on Graphs in Science

Prediction

* Protein folding

[Senior et al., Nature 2019]
[Jumper et al., Nature 2021]

* Simulation of glass dynamics

[Baspt et al, Nature Physics 2021]

* Molecular Property Prediction ¢ Jet Tagging in HEP
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Refined based on [Qu, Li, Qian, 2022]



Can We Trust the GNN models?

 Graph Neural Networks a
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» Lack of the model transparency
» Unable to tell the effective data patterns
» Sensitive to the data distribution shifts
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Graph neural network: one layer

 Many scientific applications need to collect data insights
beyond just to achieve high prediction performance.



Recent Efforts on Interpretable GNNs

* Previous works on interpreting GNNs
= GNNExplainer [Ying et al., 2019]
= PGExplainer [Luo et al., 2020]
= PGM-Explainer [Vu et al., 2020]
" GraphLIME [Huang et al., 2020]
= SubgraphX [Yuan et al., 2021]
= GraphMask [Schlichtkrull et al., 2021]
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To check what data
patterns GNNs capture



Recent Efforts on Interpretable GNNs

* Previous works on interpreting GNNs
= GNNExplainer [Ying et al., 2019]
= PGExplainer [Luo et al., 2020]
= PGM-Explainer [Vu et al., 2020]
" GraphLIME [Huang et al., 2020]
= SubgraphX [Yuan et al., 2021]
= GraphMask [Schlichtkrull et al., 2021]
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Soluble or not? fo(Gs) = fo © gqb(G)/

* Almost all previous works adopt
post-hoc approaches...

Step 1. Given a trained GNN predictor fy
Step 2. Fix fg and train an explainer g4

To check what data
patterns GNNs capture



Issues of Post-hoc Methods

Our claim: Post-hoc methods can hardly provide trustworthy
interpretation for GNN models.

 Post-hoc methods are essentially good at checking sensitivity



Issues of Post-hoc Methods

Our claim: Post-hoc methods can hardly provide trustworthy
interpretation for GNN models.

 Post-hoc methods are essentially good at checking sensitivity
 They suffer from
1. Data distribution shifts

Gg Selected Features

I fo may not tell if G is effective for predicting Y
— fg is never trained on any subgraph Gg!

Y The Prediction Task




Issues of Post-hoc Methods

Our claim: Post-hoc methods can hardly provide trustworthy
interpretation for GNN models.

 Post-hoc methods are essentially good at checking sensitivity
 They suffer from

2. Spuriously correlated patterns
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Examples of spurious correlations, DIR [Wu et al. 2022]



Inherently Interpretable Models

* Our Goal: An inherently interpretable model

* Jointly train both the predictor fg and the extractor gy
" |nput:
=" The original graphs
= Qutput:
= Predictions for the application task
= Effective data patterns

e Use attention but not vanilla attention!

Graph Stochastic Attention (GSAT)
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Graph Stochastic Attention (GSAT)

e Rationale: Inject stochasticity when learning attention
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Graph Stochastic Attention (GSAT)

e Rationale: Inject stochasticity when learning attention

* A regularizer is used to encourage high randomness
* Low sampling prob.
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Graph Stochastic Attention (GSAT)

e Rationale: Inject stochasticity when learning attention
* A regularizer is used to encourage high randomness
* Low sampling prob.

* Driven by the classification loss, critical edges should learn
to be with low randomness

* High sampling prob.
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Graph Stochastic Attention (GSAT)

e Rationale: Inject stochasticity when learning attention

* A regularizer is used to encourage high randomness
* Low sampling prob.
* Driven by the classification loss, critical edges should learn
to be with low randomness
* High sampling prob.
* The part of G5 with less randomness is indicative to the
prediction task Y
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Graph Stochastic Attention (GSAT)

e Rationale: Inject stochasticity when learning attention

* How to control randomness?

* Information regularizer to control randomness!
* i.e., the Information Bottleneck (IB) principle

> ming gy — 1(fo(Gs),Y) + BI(Gs; G, sit. Gs~g(G)

Information regularization KL(attention|Q)

Graph Information bottleneck [Wu et al. 2020, Yang et al. 2021]



Graph Stochastic Attention (GSAT)

* Architecture
1. Inject stochasticity when learning attention

— Generate a random graph Gs ~ g4 (G)

Subgraph Sampling

( Extractor g4 a ~ Bern(p) )
GNN  }>{Edge Emb J>{ MLP, M «Jd¢
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Graph Stochastic Attention (GSAT)

* Architecture
1. Inject stochasticity when learning attention
— Generate a random graph Gs ~ g4 (G)
2. The predictor fg(Gs) makes predictions based on Gy

— Toming g — I(fg(Gs),Y) + BI(Gs; G)

( Extractor g4
> GNN || Edge Emb |~ '
Share Parant
fomp MLPy  J«—{Graph Emb  Sampled
\_ Predictor fy Subgra16p h




Guaranteed Spurious Correlation Removal

e Our IB Objective Provides

" Guaranteed spurious correlation removal

® Guaranteed interpretability

Theorem 4.1. Suppose each G contains a subgraph G
such that Y is determined by G in the sense that Y =
J(G%) + € for some deterministic invertible function f with
randomness ¢ that is independent from G. Then, for any
B € [0,1], Gg¢ = G% maximizes the GIB I (Gg5;Y) —
BI (Gg;G), where Gg € Gy (G).

. .

The environment

may contain spurious

correlation with Y
Figure 6. GG determines Y. However, the environment features in
G\ G'¢ may contain spurious (backdoor) correlation with Y.
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Experiments

* Experiments on Interpretability

Table 1. Interpretation Performance (AUC). The underlined results highlight the best baselines. The bold font and bold® font highlight
when GSAT outperform the means of the best baselines based on the mean of GSAT and the mean-2*std of GSAT, respectively.

BA-2MOTIFS

MUTAG

MNIST-75sP

SPURIOUS-MOTIF

b=0.5 b=0.7 b=0.9
GNNEXPLAINER  67.35 4+ 3.29 61.98 + 5.45 59.01 + 2.04 62.62 + 1.35 62.25 + 3.61 58.86 + 1.93
PGEXPLAINER 84.59+9.09 60.91+17.10 69.34 +4.32 69.54 + 5.64 72.334+9.18 72.34 + 2.91
GRAPHMASK 92.54 + 8.07 62.23 +9.01 73.10 & 6.41 72.06 + 5.58 73.06 + 4.91 66.68 + 6.96
IB-SUBGRAPH 86.06 + 28.37  91.04 + 6.59 51.20 +5.12  57.20+14.35 62.890 +15.59 47.29 + 13.39
DIR 82.78 +10.97 64.44 +2881  32.35+9.39 78.15 + 1.32 77.68 4+ 1.22 49.08 + 3.66
GIN+GSAT 98.74" +0.55 99.60" +0.51 83.367 +£1.02 78.45+3.12 74.07 + 5.28 71.97 + 4.41
GIN+GSAT* 97.43" +1.77 97757 +£0.92 83.70" +1.46 85.55" +2.57 85567 +1.93 83.59" +2.56
PNA+GSAT 93.77+3.90 99.07"+050 84.68" +£1.06 83.34"+217 86.94" +4.05 88.667 +2.44
PNA+GSAT* 89.044+4.92 96.22" +£2.08 8854"+0.72 90.55" +1.48 89.79" +1.91 89.54" +1.78

*: Apply GSAT to a pretrained GNN and do further co-training.

Improve up to 20%, and 12% on average in interpretation performance
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Experiments

* Experiments on Generalizability

Table 2. Prediction Performance (Acc.). The bold font highlights the inherently interpretable methods that significantly outperform the
corresponding backbone model, GIN or PNA, when the mean-1*std of a method > the mean of its corresponding backbone model.

SPURIOUS-MOTIF

MoLHIvV (AUC) GRAPH-SST2 MNIST-75sp b—05 b—07 b—009
GIN 76.69 £ 1.25 82.73+0.77 95.744+0.36 39.87+1.30 39.044+1.62 38.57+2.31
IB-SUBGRAPH 76.43 £ 2.65 82.99+0.67 93.10+1.32 54.36+7.09 4851576 46.19+5.63
DIR 76.34 +1.01 82.32+0.85  88.51 +2.57 4549 +3.81 41.13+2.62 37.61+2.02
GIN+GSAT 76.47 + 1.53 82.95+0.58 96.24+0.17 52.74+4.08 49.12+3.29 44.22+5.57
GIN+GSAT" 76.16 = 1.39 82.57+0.71 96.21 +0.14 46.62+295 41.26+3.01 39.74 +2.20
PNA (NO SCALARS) 78.91 +1.04 79.87+1.02 87.204+5.61 68.154+2.39 66.354+3.34 61.40 & 3.56
PNA+GSAT 80.24 +0.73 80.92+0.66 93.96+0.92 68.74+224 64.38+3.20 57.01+2.95
PNA+GSAT* 80.67 £+ 0.95 82.81+0.56 9238+1.44 69.72+1.93 67.31 186 61.49+ 3.46
MOLBACE MOLBBBP MOLCLINTOX MOLTOX21 MOLSIDER

PNA 73.52+3.02 6721 +1.34 86.724+2.33 T5.08+£0.64 56.51 £ 1.90

GSAT T7.41+2.42 69.17+1.12 87.80+2.36 74.96 £0.66 57.58 +1.23

GSAT® 7361 +£1.59 66.30+£0.79 8926+1.66 75.71+048 59.194+1.03

Improve 3% on average in prediction accuracy
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 Comparisons on Spurious Correlation Removal

Table 4. Direct comparison (Acc.) with invariant learning methods

on the ability to remove spurious correlations, by applying the
backbone model used in (Wu et al., 2022).

SPURIOUS-MOTIF b=0.5 b=0.7 b=20.9
ERM 39.69+1.73 3893+1.74  33.61+1.02
V-REX 30.43+269  39.08+1.56  34.81 +2.04
IRM 4130 +£1.28  40.16+1.74  35.12+2.71
DIR 4550 £2.15 4336 +1.64  39.87 +0.56
GSAT 53.27T +5.12 56.50' +3.96 53.117 +4.64
GSAT* 43.27+4.58  42.51+5.32 45.761 +5.32

Improve 12% on average in spurious correlation removal
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Conclusion

* We propose a novel attention mechanism GSAT
v'Better interpretation performance
v'Better generalization capability
v'Better spurious correlation removal

* Code is available at: https://github.com/Graph-COM/GSAT
v'Feel free to try it out in Colab:
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https://colab.research.google.com/drive/1t0_4BxEJ0XncyYvn_VyEQhxwNMvtSUNx?usp=sharing
https://github.com/Graph-COM/GSAT

