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Contextual Bandits with Knapsacks

Round 1 Round2 ...
Reward Reward
0.2 0.01
K arms 0.5 0.3
0.05 0.7

Goal: Sequentially choose arms over T rounds to maximize rewards.



Contextual Bandits with Knapsacks

Round 1 Round2 ...
Reward  Consumptions Reward Consumptions
Rp,........ R4 Ry,........ Ry
0.2 0.1,........ ,0.35 0.01 0.25,........ ,0.7
0.5 0.6,........ ,0.4 0.3 0.6,........ ,0.1
K arms
0.05 0.01,........ ,0.3 0.7 0.34,........ ,0.49

Goal: Sequentially choose arms over T rounds to maximize rewards subject to
resource consumptions less than budget B

Applications: Advertising, clinical trials, general resource allocation problems

1. Badanidiyuru, A. et. al. Bandits with Knapsacks. In FOCS, 2013.
2. Devanur, N.R. and Hayes, T.P. The Adwords Problem: Online Keyword Matching with Budgeted Bidders Under Random Permutations. In ACM-EC, 2009.



Smoothed Linear Contextual Bandits with Knapsacks (LinCBwK)

« Smoothed context vector corresponding to each of K arms!

ri(a) = ve(a) + g¢(a) ve(a) € BY, ge(a) ~ N(0,0%Lxm)
* Linear rewards and linear consumptions for all d resources
Elri(a)|zi(a), Hi—1] = plzi(a), p. € ST
Elve(a)|zi(a), Hi—1] = Wlzi(a), W, e R™*4

* Learner can choose the no-op arm with zero rewards and zero consumptions

* Sequentially choose arms to maximize rewards under resource constraints

T T
max Zrt(at) s.t. vat(at) <IB
t=1 t=1



Benchmark policy

* Probability distribution over arms performs better than fixed arm
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e = (1,1, W*:[ ] ri(1) = [0, 2:(2) = [0,1], B =

Choosing context 1 and 2 each with probability 0.5 gives optimal rewards

Without constraints picking fixed arm 1 or 2 gives optimal rewards

* We will benchmark algorithm performance against an optimal adaptive policy with
knowledge of true parameters and adversarially chosen contexts over all T rounds



A Primal-Dual Approach

Algorithm

« Estimate i, Wt

.« . <<:&taxt(a)> = <Wtwt(a)a0t>
e Select arm maximizing “~—— “~——

Reward Constraints

* Greedy estimates vs UCB estimates

* 0, 1s a distribution over resources computed by dual online algorithm based on past
resource consumptions

* Optimal regret when Z = O}% where OPT 1s reward of optimal adaptive policy

1. Agrawal, S. and Devanur, N. R. Linear Contextual Bandits with Knapsacks. In NeurlPS, 2016.



Stochastic Smoothed LinCBwK

Decision timeline

Reward/Regret
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Run algorithm with fixed
estimated Z for T — T rounds

T, exploration
rounds.
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Remember smoothed context vector definition

ri(a) = vi(a) + gi(a)

vi(a) € By, gi(a) ~ N(0,0°Lnxm)

Assume {z:(a)}*_, ~ D iid in each round

OPT

Remember optimal Z = — Estimate and extrapolate value of Z after Ty rounds

Additive regret

1. Agrawal, S. and Devanur, N. R. Linear Contextual Bandits with Knapsacks. In NeurlPS, 2016.




Adversarial Smoothed LinCBwK

Decision timeline

J
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Explore
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Run multiple epochs. New estimate of Z at beginning of

epoch. Maximum log T epochs. B/21log T budget
allocated for each epoch.
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Reward/Regret
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Remember smoothed context vector definition
zi(a) = vi(a) + gi(a) vi(a) € By, gi(a) ~ N(O, O'Q]Ime)

Assume {v,(a)}%_, are chosen by an adaptive adversary

Z cannot be estimated without observing contexts in all rounds

Doubling trick: Guesstimate OPT after each round, start new epoch if new guesstimate

double of previous guesstimate!

Competitive ratio bounds

1. Immorlica et. al. Adversarial Bandits with Knapsacks. In FOCS, 2019
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