Smoothed Adversarial Linear Contextual Bandits with Knapsacks

Vidyashankar Sivakumar (Amazon)
Shiliang Zuo (UIUC)
Arindam Banerjee (UIUC)

International Conference on Machine Learning (ICML)
July 2022

Contextual Bandits with Knapsacks

		Round 1	Round 2	• • • • • •
		Reward	Reward	
K arms	MULTI-ABMED BANDIT	0.2	0.01	
	MULTI-ABNEED BANDIT	0.5	0.3	
		•	•	
	MULTI-AANED BANDYT	•	•	
		0.05	0.7	

Goal: Sequentially choose arms over T rounds to maximize rewards.

Contextual Bandits with Knapsacks

			Round 1	Round 2		• • • • • •
		Reward	Consumptions	Reward	Consumptions	
			R_1,\ldots,R_d		R_1,\ldots,R_d	
	MULTI-ARMED BANDIT	0.2	0.1,,0.35	0.01	0.25,,0.7	
K arms	MULTIALNED BANDET	0.5	0.6,,0.4	0.3	0.6,,0.1	
	MULTLARMED RANDTI	0.05	0.01,,0.3	· 0.7	0.34,,0.49	

Goal: Sequentially choose arms over T rounds to maximize rewards subject to resource consumptions less than budget B

Applications: Advertising, clinical trials, general resource allocation problems

^{1.} Badanidiyuru, A. et. al. Bandits with Knapsacks. In FOCS, 2013.

³

Smoothed Linear Contextual Bandits with Knapsacks (LinCBwK)

• Smoothed context vector corresponding to each of K arms¹

$$x_t(a) = \nu_t(a) + g_t(a)$$
 $\nu_t(a) \in \mathbb{B}_2^m, \quad g_t(a) \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_{m \times m})$

• Linear rewards and linear consumptions for all d resources

$$\mathbb{E}[r_t(a)|x_t(a), H_{t-1}] = \mu_*^\intercal x_t(a), \quad \mu_* \in \mathbb{S}^{m-1}$$

$$\mathbb{E}[\boldsymbol{v}_t(a)|x_t(a), H_{t-1}] = W_*^\intercal x_t(a), \quad W_* \in \mathbb{R}^{m \times d}$$

- Learner can choose the no-op arm with zero rewards and zero consumptions
- Sequentially choose arms to maximize rewards under resource constraints

$$\max \sum_{t=1}^{T} r_t(a_t) \quad \text{s.t.} \quad \sum_{t=1}^{T} \boldsymbol{v}_t(a_t) \leq \mathbb{I}B$$

Benchmark policy

• Probability distribution over arms performs better than fixed arm

$$\mu_* = [1, 1], \quad W_* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad x_t(1) = [1.0], \ x_t(2) = [0, 1], \quad B = \frac{T}{2}$$

Choosing context 1 and 2 each with probability 0.5 gives optimal rewards Without constraints picking fixed arm 1 or 2 gives optimal rewards

• We will benchmark algorithm performance against an optimal adaptive policy with knowledge of true parameters and adversarially chosen contexts over all T rounds

A Primal-Dual Approach

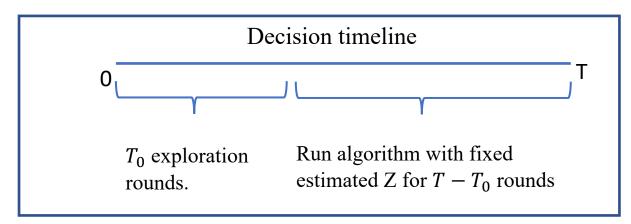
Algorithm

- Estimate $\hat{\mu}_t$, \hat{W}_t
- Select arm maximizing

$$\underbrace{\langle \hat{\mu}_t, x_t(a) \rangle}_{\text{Reward}} - Z \underbrace{\langle \hat{W}_t x_t(a), \theta_t \rangle}_{\text{Constraints}}$$

- Greedy estimates vs UCB estimates
- θ_t is a distribution over resources computed by dual online algorithm based on past resource consumptions
- Optimal regret when $Z = \frac{OPT}{B}$ where OPT is reward of optimal adaptive policy

Stochastic Smoothed LinCBwK



Reward/Regret
$${\rm REW} \geq {\rm OPT} - O\left(\left(\frac{{\rm OPT}}{B} + 1\right)m\sqrt{T}\right)$$

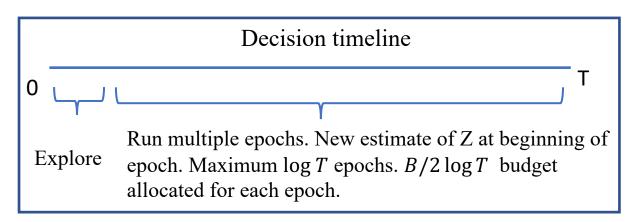
$$B \geq \Omega(m^{2/3}T^{3/4})$$

Remember smoothed context vector definition

$$x_t(a) = \nu_t(a) + g_t(a)$$
 $\nu_t(a) \in \mathbb{B}_2^m, \quad g_t(a) \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_{m \times m})$

- Assume $\{x_t(a)\}_{a=1}^K \sim \mathcal{D}$ iid in each round
- Remember optimal $Z = \frac{OPT}{B}$. Estimate and extrapolate value of Z after T_0 rounds
- Additive regret

Adversarial Smoothed LinCBwK



Reward/Regret

$$REW \ge \frac{OPT}{O(d \log T)} - O\left(\left(\frac{OPT}{B} + 1\right)m\sqrt{T}\right)$$

• Remember smoothed context vector definition

$$x_t(a) = \nu_t(a) + g_t(a)$$
 $\nu_t(a) \in \mathbb{B}_2^m, \quad g_t(a) \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_{m \times m})$

- Assume $\{v_t(a)\}_{a=1}^K$ are chosen by an adaptive adversary
- Z cannot be estimated without observing contexts in all rounds
- Doubling trick: Guesstimate *OPT* after each round, start new epoch if new guesstimate double of previous guesstimate¹
- Competitive ratio bounds

Thank you!

We would like to thank the reviewers for valuable comments and questions. The research was supported by NSF grants IIS 21-31335, OAC 21-30835, DBI 20-21898, and a C3.ai research award.