A Hierarchical Bayesian Approach to Inverse Reinforcement Learning with Symbolic Reward Machines

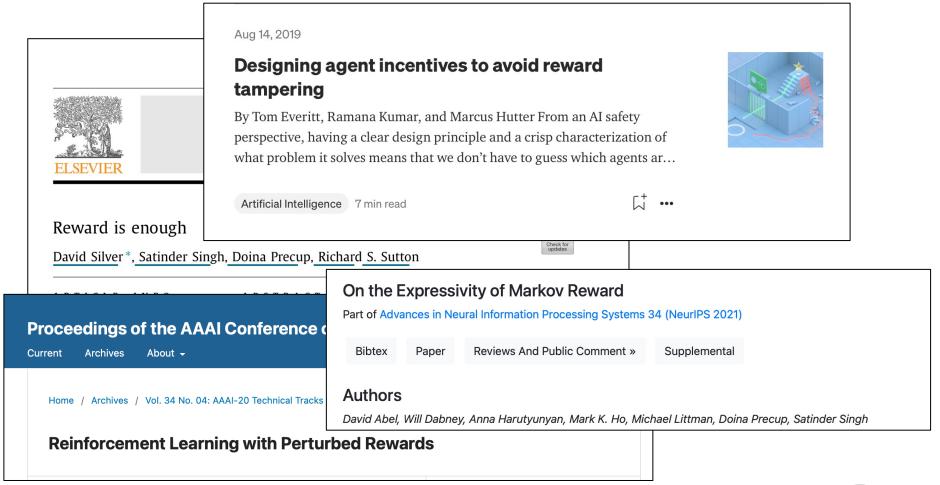
Weichao Zhou - Wenchao Li

Dependable Computing Lab

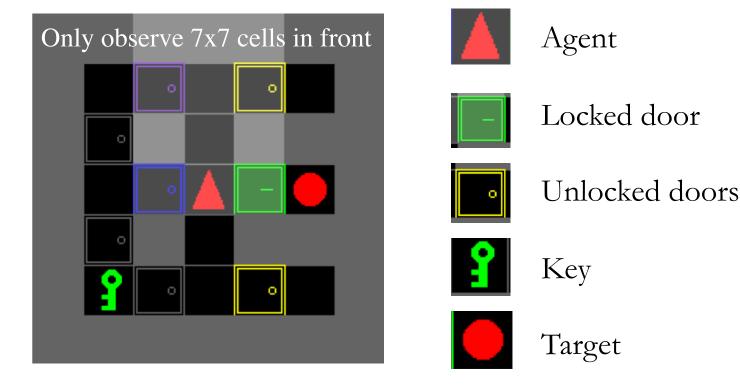
Department of Electrical and Computer Engineering

Boston University

Reward Design in RL Tasks



Motivating Example¹

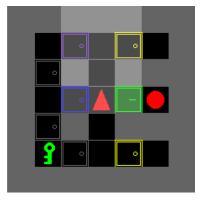


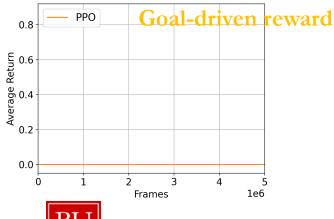
Open doors => Pick up key => Unlock door => Drop the key => (Goal) pick up the target

3

Motivating Example

reward +1 if picking up target



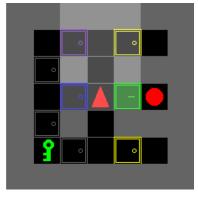


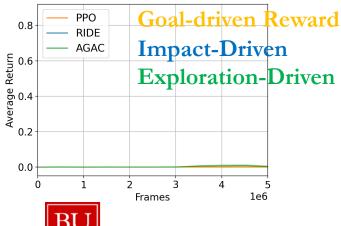
Goal-driven reward

RL algorithms fail to solve the task

Motivating Example

reward +1 if picking up target; intrinsic reward otherwise





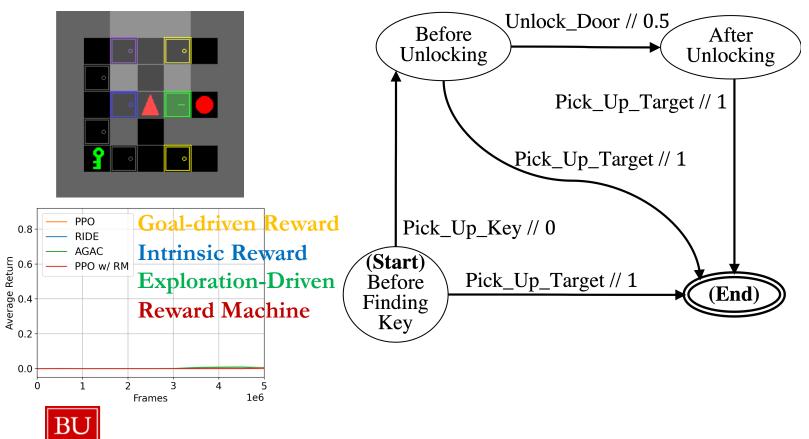
Goal driven reward

RL algorithms fail to solve the simple task

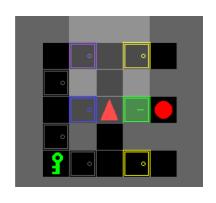
Intrinsic Reward

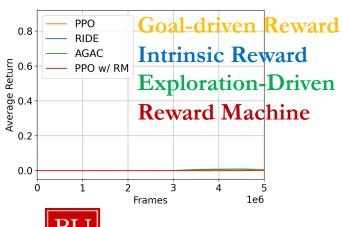
Impact-driven [Raileanu, R. et al. 2020] and exploration-driven [Flet-Berliac, Yannis et al. 2021] (SOTA) cannot solve the task efficiently

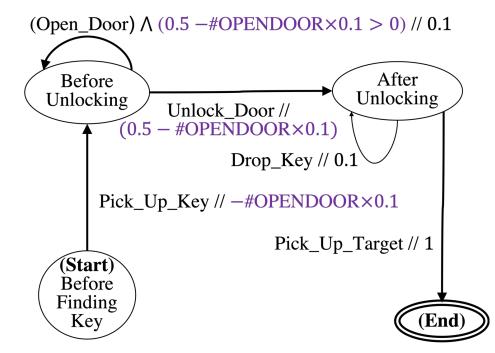
Reward Machine (RM)¹



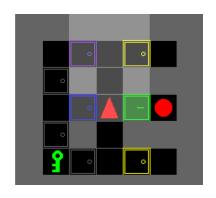
1. Icarte, R. T., Klassen, T. Q., Valenzano, R., and McIlraith, S. A. Reward machines: Exploiting reward function structure in reinforcement learning. *Journal of Artificial Intelligence Research*, 73:173–208, 2022.

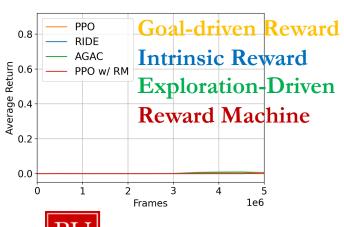


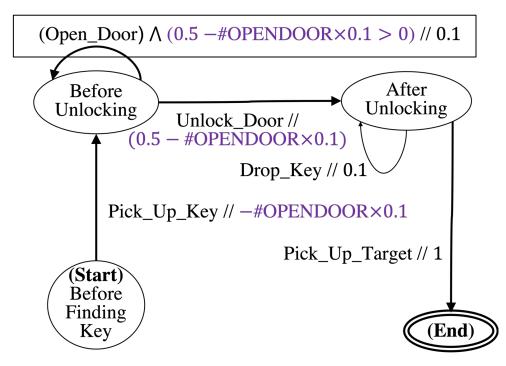




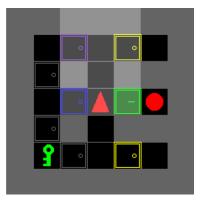
- Output rewards represented as functions
- Leverage the history experience

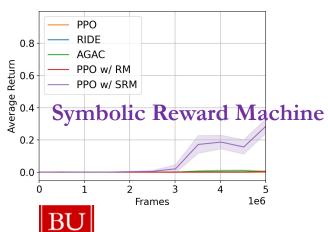


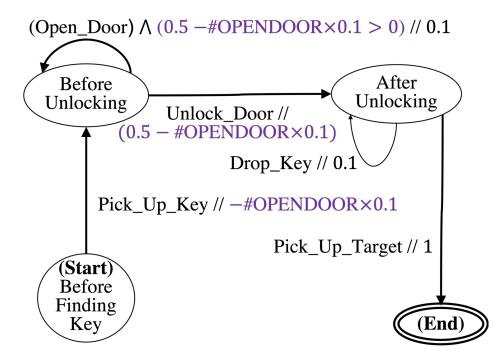




- Output rewards represented as functions
- Leverage the history experience

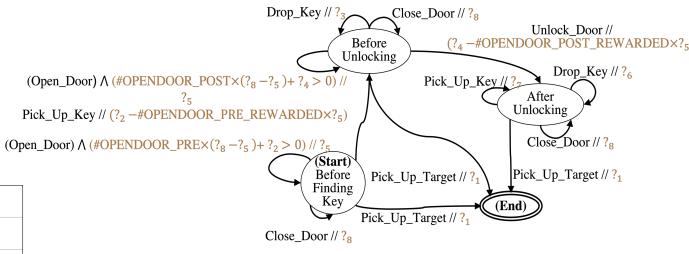


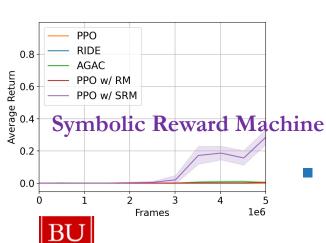




Have to manually assigned the numerical terms in the rewards

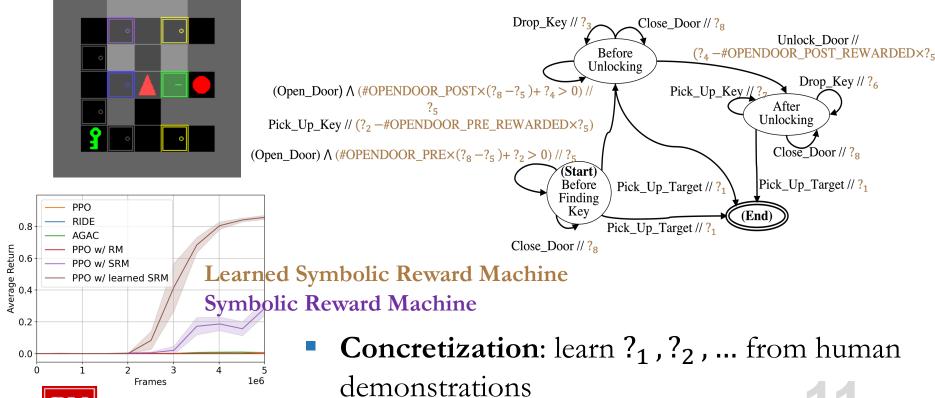
- Design SRM with unknown variables $?_1$, $?_2$, ...
- Design variable constrains, e.g. $\bigwedge_{id=2}^{8} ?_{id} \le ?_1$





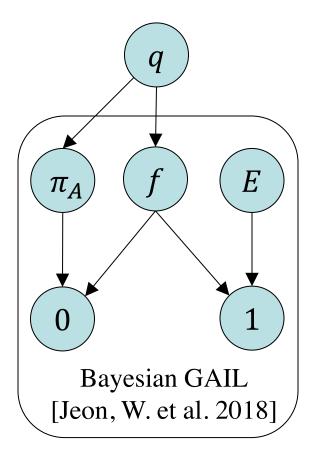
Concretization: learn $?_1$, $?_2$, ... from human demonstrations

- Design SRM with unknown variables $?_1$, $?_2$, ...
- Design variable constrains, e.g. $\bigwedge_{id=2}^{8} ?_{id} \le ?_1$

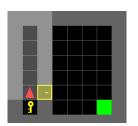


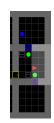
A Hierarchical Bayesian Approach

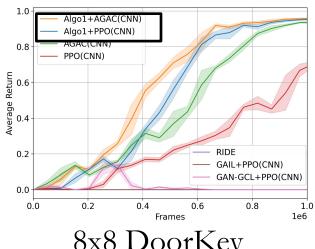
- Input:
 - Human demonstrations E
 - An SRM with unknown variables $?_1$, $?_2$, ...
- Initialization:
 - A distribution q of possible values of $?_1$, $?_2$, ...
 - A latent reward function f conditioned on SRM's outputs
 - An agent policy π_A
- Iteration:
 - 1. Train f to discriminate E from the trajectories of π_A
 - 2. Optimize q to match f
 - 3. Train π_A with most likely symbolic reward function w.r.t q
- Output:
 - Trained agent policy π_A
 - Distribution q concentrating on the optimal values of $?_1$, $?_2$, ...

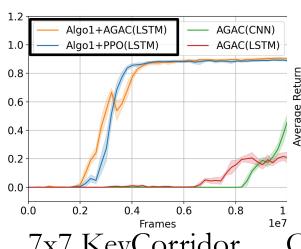


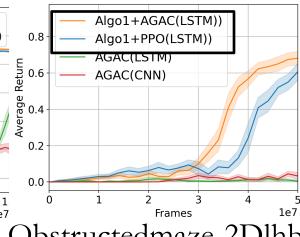
Results: evaluate agent policy π_A











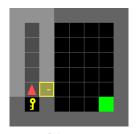
8x8 DoorKey

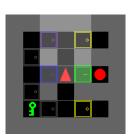
7x7 KeyCorridor

Obstructedmaze-2Dlhb

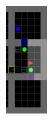
- GAIL, GAN-GCL fail while our algorithm (Algo1) performs well in all 3 tasks
- SRMs are relatively sparse while baselines use/generate dense rewards

Results: evaluate learned SRMs



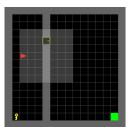


7x7 KeyCorridor

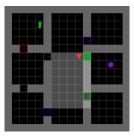


Obstructedmaze-2Dlhb

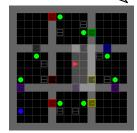
Learned SRMs in small environments Train RL agents in larger environments



16x16 DoorKey

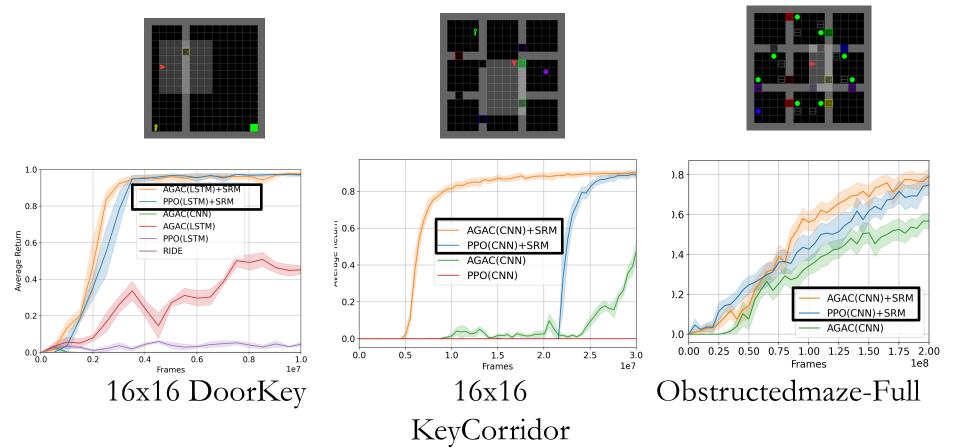


16x16 KeyCorridor



Obstructedmaze-Full

Results: evaluate learned SRMs



• The learned SRMs generalize well in all 3 tasks

Takeaways

- Propose Symbolic Reward Machine (SRM), a structured reward function
- Propose an algorithm that concretizes SRMs by learning from expert demonstrations.
- Our algorithm achieves better RL policy training efficiency in challenging benchmarks
- Our algorithm learns SRMs that are generalizable in differently configured environments

