Mitigating Gender Bias in Face Recognition using the von Mises-Fisher Mixture Model

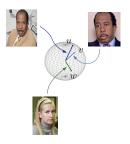
ICML 2022

Jean-Rémy Conti $^{\star1,2},$ Nathan Noiry $^{\star1},$ Vincent Despiegel^2, Stéphane Gentric^2, Stéphan Clémençon^1

*Equal contribution ¹Télécom Paris, ²IDEMIA

Face Recognition systems use face embeddings which are normalized (they lie on the hypersphere \mathbb{S}^{d-1}).

The similarity between two faces is usually measured by the cosine similarity.



Decision rule : $t \in [-1, 1]$, fixed threshold.

- $\langle u,v
 angle \geq t$ \Rightarrow "same identity",
- $\langle u, w \rangle < t \Rightarrow$ "distinct identities".

Two kinds of errors:

- False Positives : predicting "same identity" for two faces from distinct identities. → False Acceptance Rate: FAR(t).
- False Negatives : predicting "distinct identities" for two faces from a same identity. → False Rejection Rate: FRR(t).

Two kinds of errors:

- False Positives : predicting "same identity" for two faces from distinct identities. → False Acceptance Rate: FAR(t).
- False Negatives : predicting "distinct identities" for two faces from a same identity. → False Rejection Rate: FRR(t).

In practice :

- A threshold t ∈ [-1,1] is set to get a deemed acceptable security level α for FAR(t).
- 2. The False Rejection Rate is computed at this threshold:

 $FRR@(FAR = \alpha) := FRR(t)$, where $FAR(t) = \alpha$.

Typically $\alpha = 10^{-1}, 10^{-2}, \dots, 10^{-8}$.

Context

Some algorithms make 10 times more errors on black women than on white men^1 .

- *G* : set of subgroups of the population. Examples : women, men, young, old ...
- For all g ∈ G, we can compute FAR_g(t) and FRR_g(t), the False Acceptance and False Rejection Rates, specific to subgroup g.

¹Grother et al. Ongoing face recognition vendor test (frvt) part 3: Demographic effects? NIST, 2019.

Context

- \mathcal{G} : set of subgroups of the population.
- For all g ∈ G, we can compute FAR_g(t) and FRR_g(t), the False Acceptance and False Rejection Rates, specific to subgroup g.

Our new fairness metrics

1. Two ratios \rightsquigarrow interpretable metrics:

$$\frac{\max_{g} \operatorname{FAR}_{g}(t)}{\min_{g} \operatorname{FAR}_{g}(t)} \quad \text{and} \quad \frac{\max_{g} \operatorname{FRR}_{g}(t)}{\min_{g} \operatorname{FRR}_{g}(t)}$$

¹Grother et al. Ongoing face recognition vendor test (frvt) part 3: Demographic effects? NIST, 2019.

Context

- \mathcal{G} : set of subgroups of the population.
- For all g ∈ G, we can compute FAR_g(t) and FRR_g(t), the False Acceptance and False Rejection Rates, specific to subgroup g.

Our new fairness metrics

1. Two ratios \rightsquigarrow interpretable metrics:

$$BFAR(\alpha) = \frac{\max_{g} FAR_{g}(t)}{\min_{g} FAR_{g}(t)} \text{ and } BFRR(\alpha) = \frac{\max_{g} FRR_{g}(t)}{\min_{g} FRR_{g}(t)}$$

 The threshold t satisfies max_{g∈G} FAR_g(t) = α instead of FAR_{total}(t) = α. → more robust to a change of evaluation dataset

¹Grother et al. Ongoing face recognition vendor test (frvt) part 3: Demographic effects? NIST, 2019.

Geometric Embedding View on Fairness

Observation : The embeddings of women fill less space on the hypersphere than the embeddings of men.

hyperspherical gaussian

$$\mathbb{P}(X \in \mathrm{d}x) = \sum_{k=1}^{K} \pi_k \widetilde{C_d(\kappa_k)} \exp\left(\kappa_k \mu_k^T x\right)$$

 \leadsto We set a mixture of von Mises-Fisher distributions, as a statistical model on the hypersphere $\mathbb{S}^{d-1}.$

The parameter κ is the inverse of the variance of a gaussian constrained to live on $\mathbb{S}^{d-1}.$

Geometric Embedding View on Fairness

o femaleso males

hyperspherical gaussian

$$\mathbb{P}(X \in dx) = \sum_{k=1}^{K} \pi_k \widehat{C_d(\kappa_k) \exp\left(\kappa_k \mu_k^T x\right)}$$

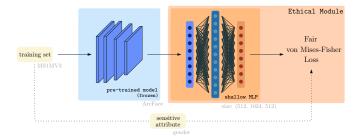
$$\begin{split} &K \text{ identities} \\ &\mu_k: \text{ centroid of the }k\text{-th identity} \\ &\kappa_k = \left\{ \begin{matrix} \kappa_F & \text{if female,} \\ &\kappa_M & \text{if male.} \end{matrix} \right. \end{split}$$

With hyperparameters κ_F and κ_M , the negative log-likelihood of the statistical model is the *Fair von Mises-Fisher loss*:

$$\mathcal{L}_{\mathsf{FvMF}}(\Theta, \{\mu_k\}) = -\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{C_d(\kappa_{y_i}) e^{\kappa_{y_i}} \mu_{y_i}^{\mathsf{T}} z_i}{\sum_{k=1}^{K} C_d(\kappa_k) e^{\kappa_k} \mu_k^{\mathsf{T}} z_i} \right].$$

where $\mathbf{z}_i = f_{\Theta}(\mathbf{x}_i)$ is the embedding of the image \mathbf{x}_i .

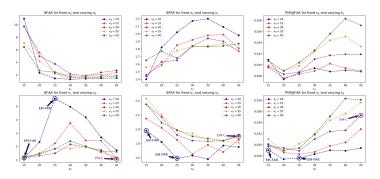
The Ethical Module



o femaleso males

Results

BFAR and BFRR trends are correlated with κ_H and κ_F .



New SOTA for correcting the gender bias of pre-trained models (3 methods: EM-FAR, EM-FRR, EM-C).

FAR LEVEL:	10 ⁻⁴			10^{-3}		
MODEL	FRR@FAR (%)	BFRR	BFAR	FRR@FAR (%)	BFRR	BFAR
ARCFACE	0.078	10.27	4.72	0.059	4.17	1.81
ARCFACE + PASS-G	0.315	4.54	6.51	0.107	5.22	2.11
ARCFACE + EM-FAR	0.151	11.22	2.11	0.072	9.16	1.19
ARCFACE + EM-FRR	0.100	5.89	33.65	0.058	4.11	5.24
ARCFACE + EM-C	0.164	9.18	2.44	0.081	5.15	<u>1.20</u>

- Can be applied to any pre-trained model,
- Very fast training,
- Takes advantage of the performance of SOTA pre-trained networks,
- Interpretability: minimizing the Fair von Mises-Fisher loss is equivalent to maximizing the true likelihood of a Gaussian mixture model,
- The sensitive attribute (here, the gender) is only used during the training phase of the model, not afterwards.

Thanks for your attention !

For more information, please reach out to: jean-remy.conti@telecom-paris.fr or check out our paper

