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Background: MoE Transformer
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replace the FFN sublayer
with MoE sub-layer (Mixture 
of Experts, i.e., a set of FFN 
sublayers residing at different 
machines) 
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Communication Cost in MoE Transformer
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Gating Dropout: Communication-efficient 
Regularization
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Communication Efficiency: 
reduce communication cost by skipping all-
to-all operations
Regularization Effect: 
encourage learning a general ability as well 
as exploring other experts without relying 
on the gating network



Experimental Setup
Datasets (multilingual translation)
• WMT-10: contains 32.5 million parallel sentences in 10 languages
• Web-50: contains 700 million parallel sentences in 50 languages

Models
• WMT-10: Transformer-base architecture [1] (5.6 billion parameters)
• Web-50: Transformer-big architecture [1] (10 billion parameters)

Methods
• Baseline: Z-code M3 [2]
• Our methods: Gate-Drop and Gate-Expert-Drop

[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).
[2] Kim, Young Jin, et al. "Scalable and efficient moe training for multitask multilingual models." arXiv (2021).



Experimental Results
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Note: 
E -> X means translation from 
English to other languages. 
Low means only low-resource 
languages are considered. 



Conclusion
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For complete details on this work, please refer to our paper

• Propose a new variant of dropout Gating Dropout for training MoE transformers

• Benefits: Communication efficiency and Regularization effect

• Demonstrate faster wall-clock convergence speed and higher converged BLEU 

scores on multilingual translation datasets


