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Background: MoE Transformer
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Communication Cost in MoE Transformer
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Gating Dropout: Communication-efficient
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Communication Efficiency:

reduce communication cost by skipping all-
to-all operations

Regularization Effect:

encourage learning a general ability as well
as exploring other experts without relying
on the gating network



Experimental Setup

Datasets (multilingual translation)
* WMI-10: contains 32.5 million parallel sentences in 10 languages
* Web-50: contains 700 million parallel sentences in 50 languages

Models
* WMI-10: Transformer-base architecture [1] (5.6 billion parameters)
* Web-50: Transformer-big architecture [1] (10 billion parameters)

Methods
e Baseline: Z-code M3 [2]
* Our methods: Gate-Drop and Gate-Expert-Drop

[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).
[2] Kim, Young Jin, et al. "Scalable and efficient moe training for multitask multilingual models." arXiv (2021).



Experimental Results
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Baseline 28.63 23.01 22.15 34.26 33.89
Gate-Drop 29.22 23.86 22.87 34.59 34.34

Gate-Expert-Drop 28.85 23.22 22.61

34.49 34.22




Conclusion

* Propose a new variant of dropout Gating Dropout for training MoE transformers

* Benefits: Communication efficiency and Regularization effect

* Demonstrate faster wall-clock convergence speed and higher converged BLEU

scores on multilingual translation datasets

For complete detalls on this work, please refer to our paper
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