

Microsoft

Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers

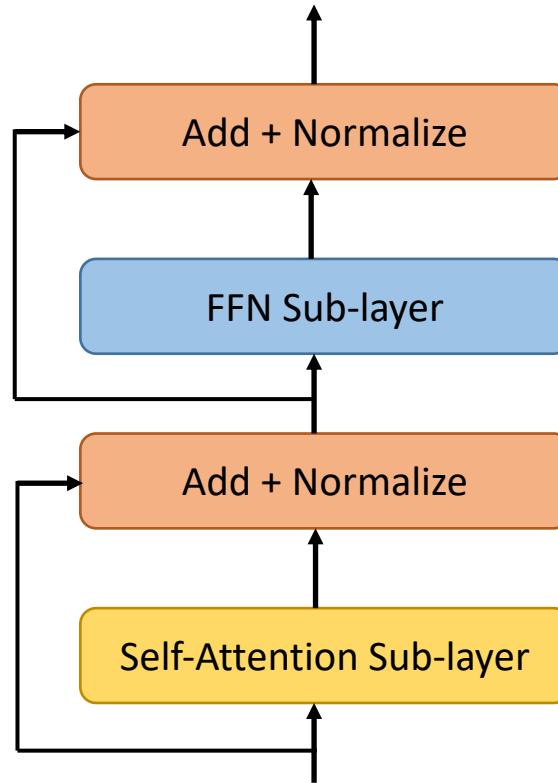
Rui Liu^{*1}, Young Jin Kim², Alexandre Muzio², Hany Hassan Awadalla²

¹ University of Michigan, Ann Arbor

² Microsoft

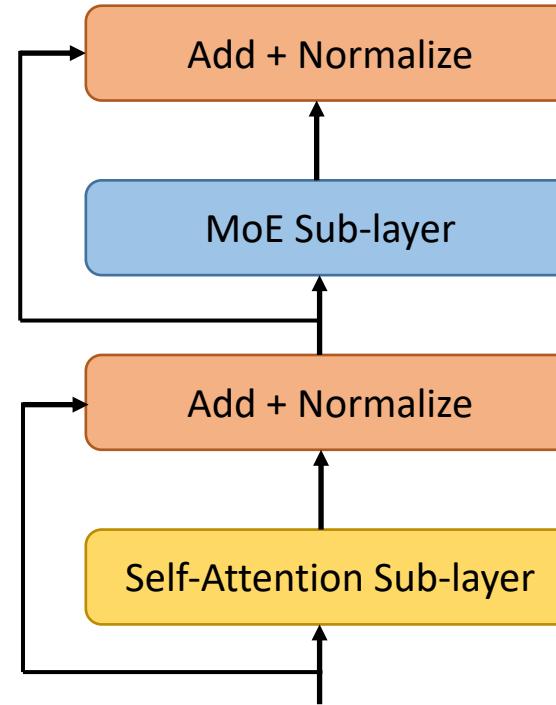
^{*}Work done while a research intern at Microsoft

Background: MoE Transformer



Dense transformer [1,2]

replace the **FFN sublayer** with **MoE sub-layer** (*Mixture of Experts*, i.e., a **set** of FFN sublayers residing at different machines)



MoE Transformer [3,4]

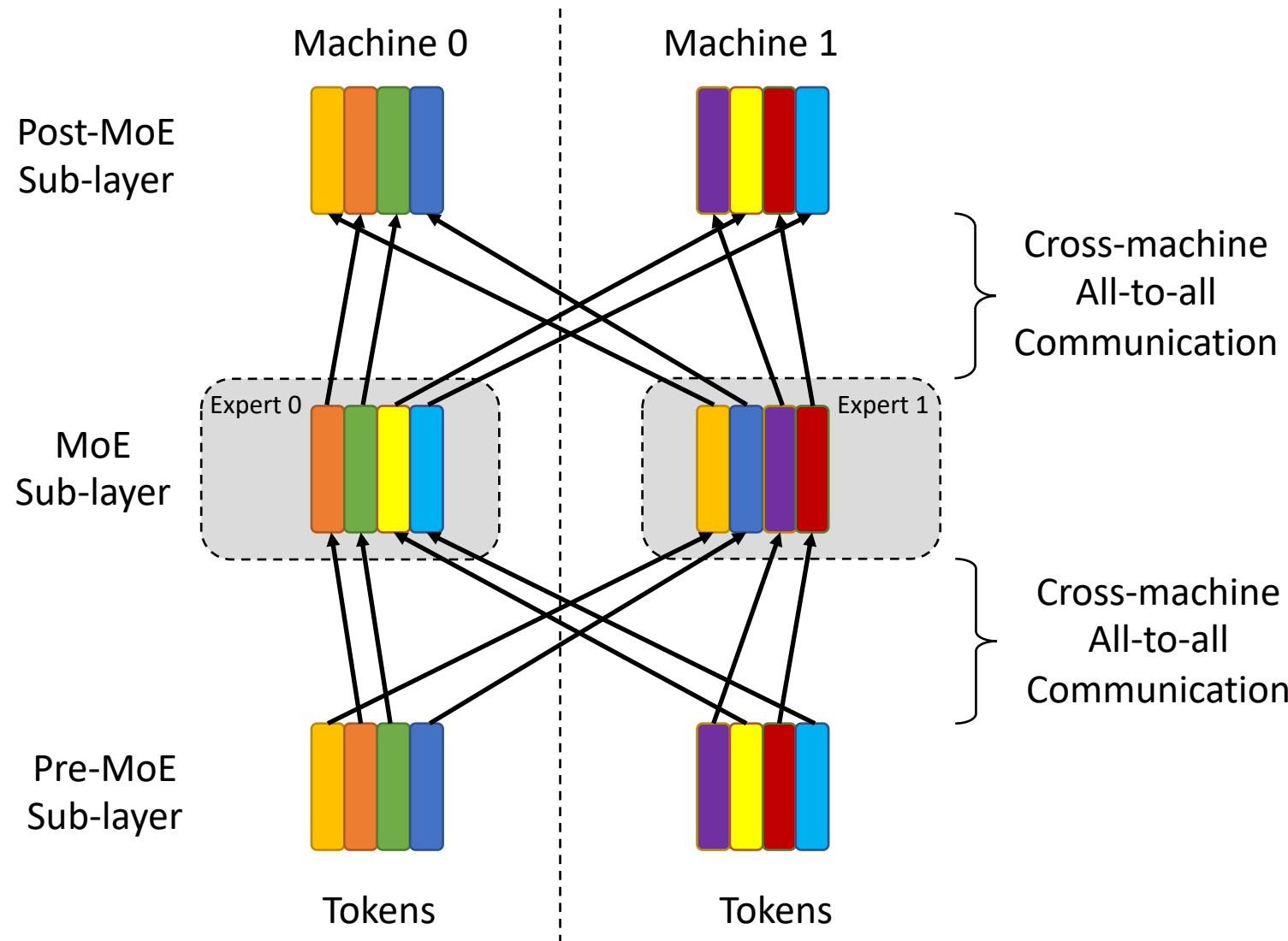
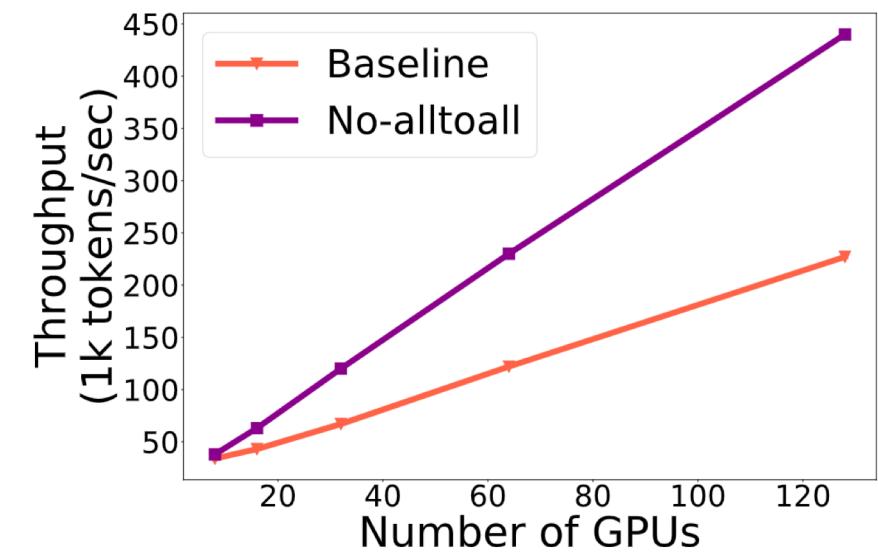
[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

[2] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv (2018).

[3] Fedus, William, Barret Zoph, and Noam Shazeer. "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity." arXiv (2021).

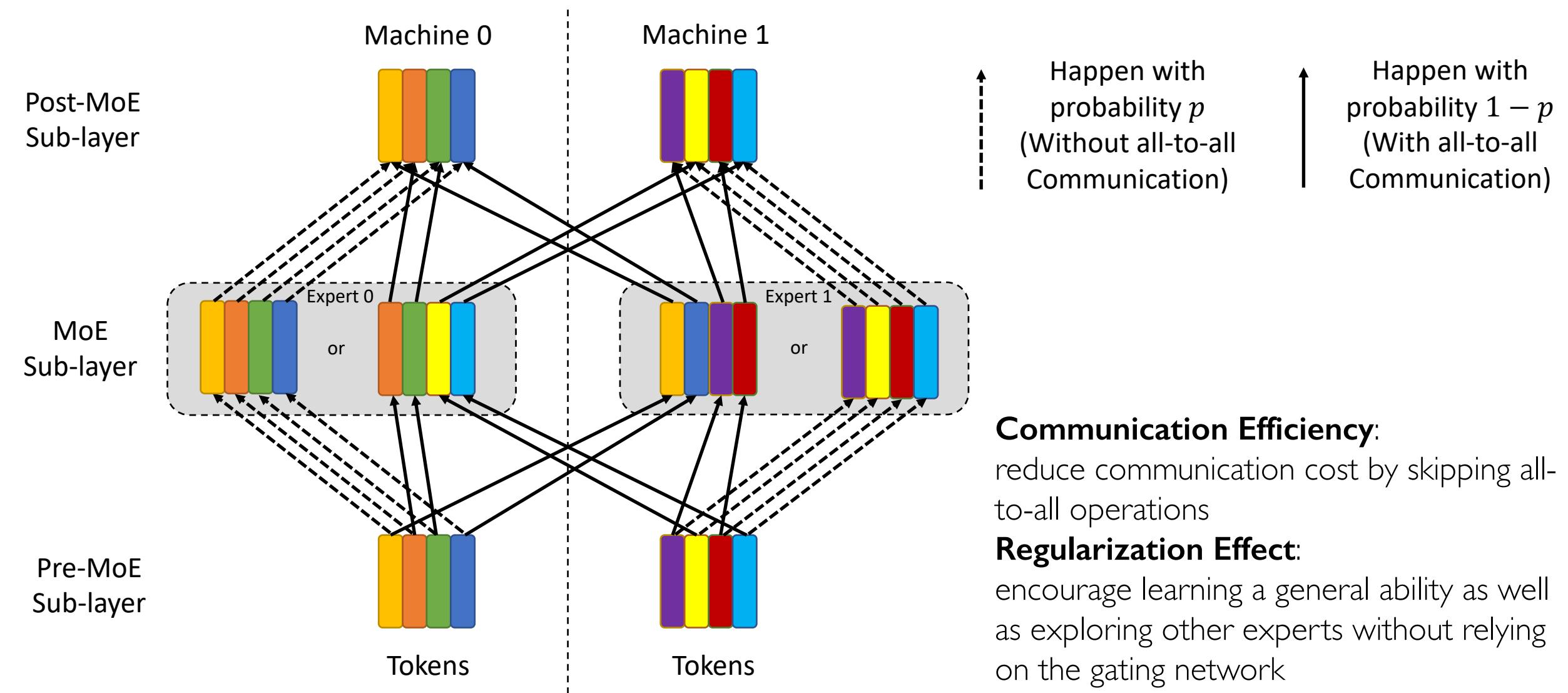
[4] Kim, Young Jin, et al. "Scalable and efficient moe training for multitask multilingual models." arXiv (2021).

Communication Cost in MoE Transformer



Significant throughput improvement when removing all-to-all operations

Gating Dropout: Communication-efficient Regularization



Experimental Setup

Datasets (multilingual translation)

- WMT-10: contains 32.5 million parallel sentences in 10 languages
- Web-50: contains 700 million parallel sentences in 50 languages

Models

- WMT-10: Transformer-base architecture [1] (5.6 billion parameters)
- Web-50: Transformer-big architecture [1] (10 billion parameters)

Methods

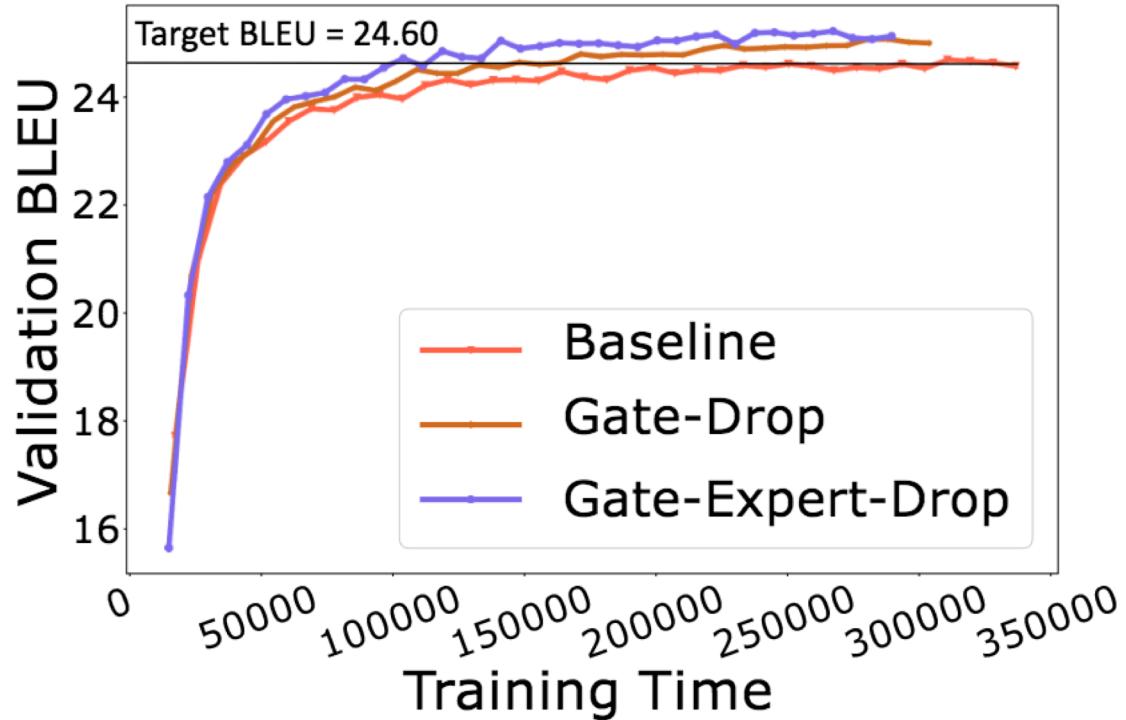
- Baseline: Z-code M3 [2]
- Our methods: Gate-Drop and Gate-Expert-Drop

[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

[2] Kim, Young Jin, et al. "Scalable and efficient moe training for multitask multilingual models." arXiv (2021).

Experimental Results

WMT-10



Web-50

Method	BLEU (avg)	E→X	E→X (low)	X→E	X→E (low)
Baseline	28.63	23.01	22.15	34.26	33.89
Gate-Drop	29.22	23.86	22.87	34.59	34.34
Gate-Expert-Drop	28.85	23.22	22.61	34.49	34.22

Note:

E → X means translation from English to other languages.
Low means only low-resource languages are considered.

Conclusion

- Propose a new variant of dropout **Gating Dropout** for training **MoE transformers**
- Benefits: **Communication efficiency** and **Regularization effect**
- Demonstrate **faster wall-clock convergence speed** and **higher converged BLEU scores** on multilingual translation datasets

For complete details on this work, please refer to our paper

Rui Liu, Young Jin Kim, Alexandre Muzio and Hany Hassan Awadalla. **Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers**,
ICML 2022

Microsoft