

State Transition of Dendritic Spines Improves Learning of Sparse Spiking Neural Networks

Yanqi Chen ¹² Zhaofei Yu ^{† 12 3} Wei Fang ¹² Zhengyu Ma ^{† 2} Tiejun Huang ^{12 3} Yonghong Tian ^{† 12}

Speaker: Yanqi Chen

Introduction

ジャー・ファイン At 京大学 PEKING UNIVERSITY

Spiking Neural Networks (SNNs)

Dynamic of the Leaky Integrate-and-Fire Neurons (Constant input)

• Analog mixed-signal design

Borrowed from Roy, Kaushik, et al. "Towards spike-based machine intelligence with neuromorphic computing." *Nature* 575.7784 (2019): 607-617.

· Custom digital design

Borrowed from Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable communication network and interface." *Science* 345.6197 (2014): 668-673.

Motivation

Directly trained SNNs are going deeper

Restricted number of synapses in a single neuromorphic chip

Motivation

Directly trained SNNs are going deeper

· Restricted number of synapses in a single neuromorphic chip

Motivation

Directly trained SNNs are going deeper

Restricted number of synapses in a single neuromorphic chip

	Max # Neuron	Max # Synapse
SpiNNaker	1.6×10 ⁴	1.6×10 ⁷
DYNAPs	10 ³	6.4×10 ⁴
TrueNorth	10 ⁶	2.56×10 ⁸
Loihi	1.3×10 ⁵	1.3×10 ⁸
BrainScaleS	512	14080
Tianjic	4×10 ⁴	10 ⁷
Darwin 2	1.5×10 ⁴	>107

Contributions

- Bio-inspired pruning algorithm for deep SNNs
 - I. Inspired by filopodial model of spinogenesis
 - II. Theoretical proof of convergence
 - III. SOTA low performance loss on ImageNet and deep SNN
 - IV. In-depth discussion of pruning settings

Filopodial Model

- Spinogenesis—The emergence of dendritic spines
 - Connect dendrite to axon terminal
 - Form synapse between neurons
 - Changes of spine size and shape
- Synaptic weight & Spine size
 - Positive correlation

Dendritic Filopodia

- 1. Precursors of dendritic spines
- 2. Lack clear heads (w.r.t. mature spines)
- 3. No synaptic contact

Sotelo model

Filopodium

Filopodial Model

和某人学 PEKING UNIVERSITY

- Spinogenesis—The emergence of dendritic spines
 - Connect dendrite to axon terminal
 - Form synapse between neurons
 - Changes of spine size and shape
- Synaptic weight & Spine size
 - Positive correlation

Dendritic Filopodia

- 1. Precursors of dendritic spines
- 2. Lack clear heads (w.r.t. mature spines)
- 3. No synaptic contact

Filopodial Model

はまた学 PEKING UNIVERSITY

- Pruning model
 - Transition from mature spine → filopodium
- Weight learning & Structure learning

Reparameterization of Weights

Model transitions of spines in two folds

Reparameterization of Weights

Model transitions of spines in two folds

Reparameterization of Weights

Model transitions of spines in two folds

Theorem 4.1 (Convergence). For a spiking neural network, where each synaptic weight w is dominated by corresponding spine size θ through a soft threshold mapping

$$w = \operatorname{sign}(\theta) \cdot (|\theta| - d)_+, d \ge 0, \tag{18}$$

if we apply a smooth approximation

$$w = f(\theta) := \frac{1}{\alpha} \log \left(\frac{1 + e^{\alpha(\theta - d)}}{1 + e^{-\alpha(\theta + d)}} \right), \alpha \gg 1, \quad (19)$$

and define the pseudo partial derivative during computing gradients as $\frac{\partial w}{\partial \theta}_p \equiv 1$, the loss function \mathcal{L} is L-smooth and lower bounded, the sequence $\{\mathcal{L}(\theta^t)\}_{t\in\mathbb{N}}$ must converge if learning rate $\eta < \frac{4}{L(1+e^{\alpha d})}$.

Threshold Scheduler

Increasing threshold of soft threshold function over training process

$$d^t = D \cdot f(t/T)$$

• Choice of scheduler function *f*

Act as proximal gradient descent under L1 regularized loss

$$oldsymbol{w}^t = \operatorname*{argmin}_{oldsymbol{w}} \left\{ rac{1}{2\eta} \|oldsymbol{w} - (oldsymbol{w}^{t-1} \eta
abla_{oldsymbol{w}} \mathcal{L}(oldsymbol{w}^{t-1})) \|_2^2 + \Delta d^t \|oldsymbol{w}\|_1
ight\}$$

Results

Acc. vs Sparsity

CIFAR-10

ImageNet

Results

• Final threshold *D* control the sparsity

Different schedulers has different behaviors

On Machine Learning

Results

- Choice of schedulers matters
 - Sine > Linear

• Sine has milder penalty at the end of training stage

Summary & Discussion

A pruning method for really deep SNNs

- Gradient-based method coupled with any directly trained SNNs
- Effcient Low accuracy loss under high sparsity

Based on elaborate model of synapses

- Bio-plausibility
- May shed light on more meticulously designed models

Future work

- Pursuing the optimal threshold schedulers
- Adding more biological ingredients (More Yummy!)

