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Introduction
• Spiking Neural Networks (SNNs)

Borrowed from Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a 
scalable communication network and interface." Science 345.6197 (2014): 668-673.
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Borrowed from Roy, Kaushik, et al. "Towards spike-based machine intelligence with 
neuromorphic computing." Nature 575.7784 (2019): 607-617.

Dynamic of the Leaky Integrate-and-
Fire Neurons (Constant input)



Motivation
• Directly trained SNNs are going deeper
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• Restricted number of synapses in a single neuromorphic chip
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Max # Neuron Max # Synapse
SpiNNaker 1.6×104 1.6×107

DYNAPs 103 6.4×104

TrueNorth 106 2.56×108

Loihi 1.3×105 1.3×108

BrainScaleS 512 14080

Tianjic 4×104 107

Darwin 2 1.5×104 >107
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Contributions

• Bio-inspired pruning algorithm for deep SNNs

I. Inspired by filopodial model of spinogenesis

II. Theoretical proof of convergence 

III. SOTA low performance loss on ImageNet and deep SNN

IV. In-depth discussion of pruning settings
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Filopodial Model
• Spinogenesis—The emergence of 

dendritic spines
• Connect dendrite to axon terminal
• Form synapse between neurons
• Changes of spine size and shape

• Synaptic weight & Spine size
• Positive correlation
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Sotelo model

Millers/Peters model

Filopodial model

Three models for spinogenesis
Borrowed from Yuste, Rafael. Dendritic spines. MIT press, 2010.
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Filopodial Model
• Pruning model

• Transition from mature spine → filopodium

• Weight learning & Structure learning
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Filopodial model
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Eliminate

Develop

Spine and filopodia images from Steffens, Heinz, et al. "Stable but not rigid: Chronic in vivo STED nanoscopy reveals 
extensive remodeling of spines, indicating multiple drivers of plasticity." Science Advances 7.24 (2021): eabf2806.



Reparameterization of Weights
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• Model transitions of spines in two folds
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Threshold Scheduler
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• Increasing threshold of soft threshold function over training process

• Choice of scheduler function 𝑓𝑓

• Act as proximal gradient descent under L1 regularized loss



Results
• Acc. vs Sparsity
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CIFAR-10 ImageNet



Results
• Final threshold 𝑫𝑫 control the sparsity
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• Different schedulers has different 
behaviors



Results
• Choice of schedulers matters

• Sine > Linear

• Sine has milder penalty at the end of training stage
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Summary & Discussion
• A pruning method for really deep SNNs

• Gradient-based method — coupled with any directly trained SNNs
• Effcient — Low accuracy loss under high sparsity

• Based on elaborate model of synapses
• Bio-plausibility
• May shed light on more meticulously designed models

• Future work
• Pursuing the optimal threshold schedulers
• Adding more biological ingredients (More Yummy!)
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