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The Only Certified Defense: Bagging

Bagging is the only model-agnostic certified defense against sample-level data poisoning
attacks. In fact, all three model-agnostic certified defenses (Levine & Feizi, 2021; Jia et al.,
2021; Wang et al., 2022) are the specific variants of bagging.

Poisoned Sample

%00 o~ Certified robustness of bagging is from:
%{:}. == Qriginal Data
'C'-.. Mechanism 1: a poisoned sample can only
J_I ] iInfluence a bounded number of sub-classifiers
00000 2:::: ====5 Bootstrapping (the influence range of data poisoning is limited) .
Poisoned | : .
Mechanism 2: the existing gap between the top1l
Aggregating
— m m votes and the “runner-up” votes can tolerate a

_—
Bageing bounded number of vote manipulation (the

intrinsic robustness from the voting mechanism) .
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Our Contributions

n ®We propose the first collective certification for bagging, to

n certify its collective robustness against data poisoning.

@ ®We propose hash bagging to improve the collective robustness

for bagging.
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@ Sample-wise Robustness V.S. Collective Robustness a/™

@ Threat model (sample-wise robustness): the attacker has full knowledge about the trainset, the
testing sample (denoted by x,), the training details, and the model architecture.

@ Threat model (collective robustness): the attacker has full knowledge about the trainset, the
M-size testset (denoted by D;,;), the training details, and the model architecture.

Poison budget: the attacker can arbitrarily insert r;,, ¢, delete r4,; and modify r,,,,4 Samples

Certified sample-wise robustness: guarantee that the prediction on x, is unchangeable to any
poisoning attack subject to the poison budget constraint.

Certified collective robustness: guarantee the minimum number of unchanged predictions.
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Why Need Collective Robustness ?

® Fundamental difference: the setting of the attacker objective
« 1) sample-wise robustness assumes the attacker aims to change the single prediction.

« 2) collective robustness assumes the attacker aims to degrade the overall accuracy on the testset.

@ 1) Collective Robustness Is More Practical: most data poisoning works [Wang & Chaudhuri,
2018; Goldblum et al., 2022; Geiping et al., 2020; Huang et al., 2020; Shafahi et al., 2018; Wang

et al., 2022] focus on degrading the overall testing accuracy, which exactly corresponds to
collective robustness.

@11) Collective Robustness Is More General: sample-wise robustness is a special case of
collective robustness when the testset size is one.

@ 111) Collective Robustness Is More Stable: the collective robustness on two similar testsets is
close while sample-wise robustness is different from sample to sample greatly.
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Collective Robustness Certification for Bagging

Proposition 1 (Certified collective robustness of vanilla _ _ _ o _
bagging). For testset Dyest = {5} 115", we denote §; = Eg. (2): the objective is to maximize the number of simultaneously changed

9(z;) (3 =0,..., M — 1) the original ensemble prediction, predictions. Note that a prediction is changed if there exists another class
and S; = {g | si € Dy} the ser of the indices of the sub- .

trainsets that contain s; (the i-th training sample). Then, the with more votes.
maximum number of simultaneously changed predictions
(denoted by Mz ) under r,,,q adversarial modifications,
is computed by (P1):

Eq. (3): [Py, ..., Py_1] are the binary variables that represent the poisoning

attack, where P; = 1 means that the attacker poisons the training sample s;
/

N-1

(P1): Marx=, max > I{Va,(g) < among the trainset Dygin = {5i} V0!
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Eq. (4): the number of modifications is bounded within r,,,4-
st. [Po,Pi,...,Pv_1] €{0,1}" (:/
N_lpi. < Fmod ) Eq. (5): I_/x,-(yj) denotes the minimum number of votes for class y; (after
=0 o being attacked), equals to the original value minus the number of the
Vo, (55) = Va, (35) — > _Hae |J S{fy(z;) =5} influenced sub-classifiers whose original predictions are y; .
ms 9=0 Vi, Py=1
Influenced votes — .
Yz, € Decars 1 = 9la;) 5) Eq. (6): V4, (»),y # yi , the maximum number of votes for class y:y # y;
_ _ G-1 | | (after being attacked), equals to the original value plus the number of
Vas W)= Vo) +§H{g E\ﬁg:l&}ﬁ{fﬁ’(mj) 4} influenced sub-classifiers whose original predictions are not y, because
e T ’ that, under our threat model, the attacker is allowed to arbitrarily

Vzj € Diests Yy € Y,y # 4 (6) manipulate the predictions of those influenced sub-classifiers.

The certified collective robustness is M — M atxk. /x/\ﬁs m




Upper Bound of Tolerable Poison Budget

® Proposition 2 states that the tolerable poison budget
IS no larger than 7.

Proposition 2 (Upper bound of tolerable poison budget).
Given S; = {g | si € Dy} (i =0,...,N — 1), the upper
bound of the tolerable poisoned samples (denoted by ) is

® We enlarge r to improve collective robustness.

7 = min |TI| s.. | U S;| > G/2 (7) ® A way of enlarging r is to bound the influence scope
el for each training sample. In particular, if each training
where 11 denotes a set of indices. The upper bound of the _ _ _ _
tolerable poisoned samples equals the minimum number sample is only contained in I sub-trainsets (bound
of training samples that can influence more than a half of the influence scope), we can guarantee ¥ > N/(2rI).

sub-classifiers.

@ Therefore, we design a form of bagging, improving
(both collective and sample-wise) certified
robustness by constraining the influence scope for
each training sample

g=zsmul L




Hash Bagging Improves Collective Robustness g/

. Hash bagging when N = 6 (trainset size), K = 3 (sub-
Hash Bagging

Hashy(s;) [

trainset size), G = 3 (number of sub-trainsets).

%] « 0-th sub-trainset: Hashy(s;) mod 2 = 0 (the samples

whose hash values are colored by red).

Hash, (s;) [ 13 5 3 ] « 1-st sub-trainset: Hashy(s;) mod 2 = 0 (the samples
@ @ @ whose hash values are colored by blue).
Sub-trainset 0 Sub-trainset 1 Sub-trainset 2
esCopeniTt R R SRR ey el « 2-nd sub-trainset: Hash,(s;) mod 2 = 0 (the samples
whose hash values are colored by green).

Hash bagging is one of the bagging forms with the smallest poisoning influence scope.
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1. Hash bagging achieves a comparable ensemble accuracy.

2. Hash bagging achieves a much larger tolerable poison budget.
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Collective certification consistently certifies a much tighter M 4rx (the maximum

number of simultaneously changed predictions) than the sample-wise certification
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