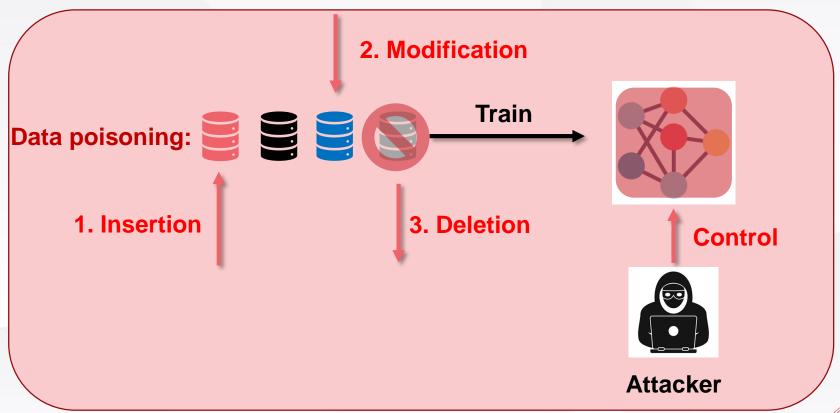


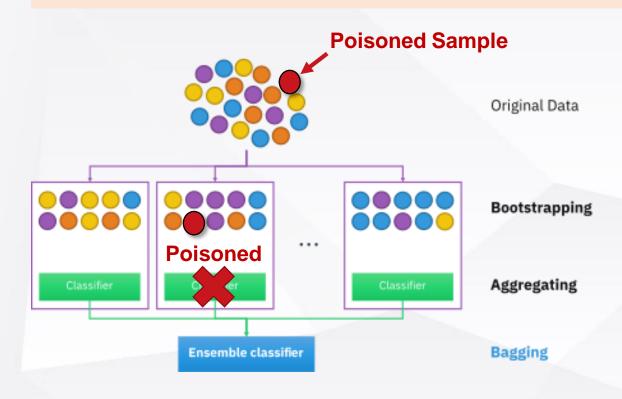
On Collective Robustness of Bagging Against Data Poisoning

Ruoxin Chen, Zenan Li, Jie Li, Chentao Wu, Junchi Yan

Shanghai Jiao Tong University


饮水思源•爱国荣校

Data Poisoning Attacks



The Only Certified Defense: Bagging

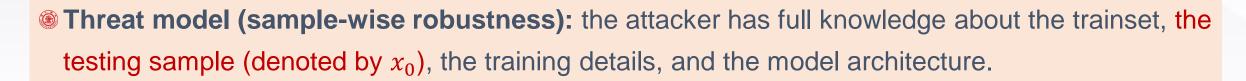
Bagging is the only model-agnostic certified defense against sample-level data poisoning attacks. In fact, all three model-agnostic certified defenses (Levine & Feizi, 2021; Jia et al., 2021; Wang et al., 2022) are the specific variants of bagging.

Certified robustness of bagging is from:

- Mechanism 1: a poisoned sample can only influence a bounded number of sub-classifiers (the influence range of data poisoning is limited).
- Mechanism 2: the existing gap between the top1 votes and the "runner-up" votes can tolerate a bounded number of vote manipulation (the intrinsic robustness from the voting mechanism).

From https://en.wikipedia.org/wiki/Bootstrap_aggregating

Our Contributions


We propose the first collective certification for bagging, to certify its collective robustness against data poisoning.

We propose hash bagging to improve the collective robustness for bagging.

Sample-wise Robustness V.S. Collective Robustness

Threat model (collective robustness): the attacker has full knowledge about the trainset, the M-size testset (denoted by D_{test}), the training details, and the model architecture.

- **Poison budget:** the attacker can arbitrarily insert r_{ins} , delete r_{del} and modify r_{mod} samples
- **© Certified sample-wise robustness:** guarantee that the prediction on x_0 is unchangeable to any poisoning attack subject to the poison budget constraint.
- @ Certified collective robustness: guarantee the minimum number of unchanged predictions.

Why Need Collective Robustness?

- Fundamental difference: the setting of the attacker objective
 - 1) sample-wise robustness assumes the attacker aims to change the single prediction.
 - 2) collective robustness assumes the attacker aims to degrade the overall accuracy on the testset.
- (e) i) Collective Robustness Is More Practical: most data poisoning works [Wang & Chaudhuri, 2018; Goldblum et al., 2022; Geiping et al., 2020; Huang et al., 2020; Shafahi et al., 2018; Wang et al., 2022] focus on degrading the overall testing accuracy, which exactly corresponds to collective robustness.
- (a) ii) Collective Robustness Is More General: sample-wise robustness is a special case of collective robustness when the testset size is one.
- (a) iii) Collective Robustness Is More Stable: the collective robustness on two similar testsets is close while sample-wise robustness is different from sample to sample greatly.

Collective Robustness Certification for Bagging

Proposition 1 (Certified collective robustness of vanilla bagging). For testset $\mathcal{D}_{test} = \{x_j\}_{j=0}^{M-1}$, we denote $\hat{y}_j = g(x_j)$ $(j=0,\ldots,M-1)$ the original ensemble prediction, and $\mathcal{S}_i = \{g \mid s_i \in \mathcal{D}_g\}$ the set of the indices of the subtrainsets that contain s_i (the *i*-th training sample). Then, the maximum number of simultaneously changed predictions (denoted by M_{ATK}) under r_{mod} adversarial modifications, is computed by $(\mathbf{P1})$:

$$(\mathbf{P1}): \quad M_{\text{ATK}} = \max_{P_0, \dots, P_{N-1}} \sum_{x_j \in \mathcal{D}_{test}} \mathbb{I}\left\{\overline{V}_{x_j}(\hat{y}_j) < \max_{y \neq \hat{y}_j} \left[\overline{V}_{x_j}(y) + \frac{1}{2}\mathbb{I}\left\{y < \hat{y}_j\right\}\right]\right\}$$
(2)

s.t.
$$[P_0, P_1, \dots, P_{N-1}] \in \{0, 1\}^N$$
 (3)

$$\sum_{i=0}^{N-1} P_i \le r_{\text{mod}} \tag{4}$$

$$\overline{V}_{x_j}(\hat{y}_j) = \underbrace{V_{x_j}(\hat{y}_j)}_{\textit{Original votes}} - \underbrace{\sum_{g=0}^{G-1} \mathbb{I}\{g \in \bigcup_{\forall i, P_i = 1} \mathcal{S}_i\} \mathbb{I}\{f_g(x_j) = \hat{y}_j\}}_{\textit{Influenced votes}}$$

$$\forall x_j \in \mathcal{D}_{test}, \ \hat{y}_j = g(x_j) \tag{5}$$

$$\overline{V}_{x_{j}}(y) = \underbrace{V_{x_{j}}(y)}_{\textit{Original votes}} + \underbrace{\sum_{g=0}^{G-1} \mathbb{I}\{g \in \bigcup_{\forall i, P_{i}=1} \mathcal{S}_{i}\}\mathbb{I}\{f_{g}(x_{j}) \neq y\}}_{\textit{Influenced votes}}$$

$$\forall x_j \in \mathcal{D}_{test}, \ \forall y \in \mathcal{Y}, y \neq \hat{y}_j$$
 (6)

The certified collective robustness is $M-M_{ATK}$.

Eq. (2): the objective is to maximize the number of simultaneously changed predictions. Note that a prediction is changed if there exists another class with more votes.

Eq. (3): $[P_0, ..., P_{N-1}]$ are the binary variables that represent the poisoning attack, where $P_i = 1$ means that the attacker poisons the training sample s_i among the trainset $D_{train} = \{s_i\}_{i=0}^{N-1}$.

Eq. (4): the number of modifications is bounded within r_{mod} .

Eq. (5): $\overline{V}_{x_i}(y_j)$ denotes the minimum number of votes for class \widehat{y}_j (after being attacked), equals to the original value minus the number of the influenced sub-classifiers whose original predictions are \widehat{y}_j .

Eq. (6): $\overline{V}_{x_i}(y)$, $y \neq y_i$, the maximum number of votes for class $y: y \neq y_j$ (after being attacked), equals to the original value plus the number of influenced sub-classifiers whose original predictions are not y, because that, under our threat model, the attacker is allowed to arbitrarily manipulate the predictions of those influenced sub-classifiers.

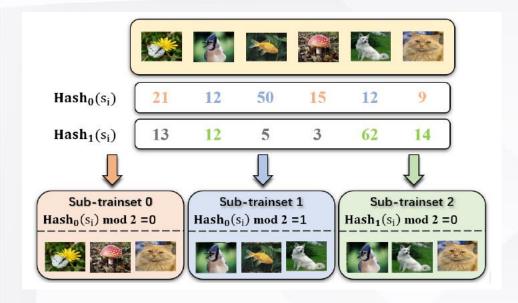
Upper Bound of Tolerable Poison Budget

Proposition 2 (Upper bound of tolerable poison budget). Given $S_i = \{g \mid s_i \in \mathcal{D}_g\}$ (i = 0, ..., N - 1), the upper bound of the tolerable poisoned samples (denoted by \overline{r}) is

$$\overline{r} = \min |\Pi| \ s.t. \ |\bigcup_{i \in \Pi} \mathcal{S}_i| > G/2 \tag{7}$$

where Π denotes a set of indices. The upper bound of the tolerable poisoned samples equals the minimum number of training samples that can influence more than a half of sub-classifiers.

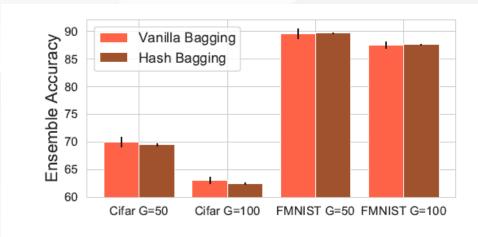
- **®** Proposition 2 states that the tolerable poison budget is no larger than \bar{r} .
- **®** We enlarge $ar{r}$ to improve collective robustness.
- **Solution** A way of enlarging \bar{r} is to bound the influence scope for each training sample. In particular, if each training sample is only contained in Γ sub-trainsets (bound the influence scope), we can guarantee $\bar{r} \geq N/(2\Gamma)$.
- Therefore, we design a form of bagging, improving (both collective and sample-wise) certified robustness by constraining the influence scope for each training sample

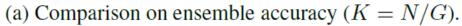


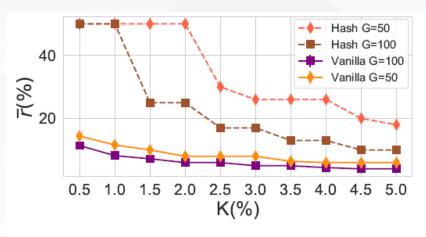
Hash Bagging Improves Collective Robustness

Hash Bagging

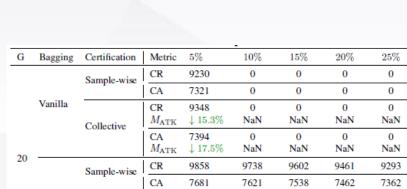
- **a** Hash bagging when N=6 (trainset size), K=3 (subtrainset size), G=3 (number of sub-trainsets).
 - 0-th sub-trainset: $Hash_0(s_i) \ mod \ 2 = 0$ (the samples whose hash values are colored by red).
 - 1-st sub-trainset: $Hash_0(s_i) \ mod \ 2 = 0$ (the samples whose hash values are colored by blue).
 - 2-nd sub-trainset: $Hash_1(s_i) \ mod \ 2 = 0$ (the samples whose hash values are colored by green).


Hash bagging is one of the bagging forms with the smallest poisoning influence scope.





Experiments: Hash Bagging V.S. Vanilla Bagging



- (b) Comparison on \overline{r} on FMNIST.
- 1. Hash bagging achieves a comparable ensemble accuracy.
- ② 2. Hash bagging achieves a much larger tolerable poison budget.

Experiments: Collective Certification V.S. Sample-wise Certification

9915

7701

 $\downarrow 34.5\%$

 $\downarrow 16.2\%$

 $\downarrow 16.5\%$

7513

7681

9919

 $\downarrow 36.2\%$

 $\downarrow 27.5\%$

9482

Collective

Sample-wise

Collective

Sample-wise

Collective

↓ 40.1%

9821

 $\downarrow 31.7\%$

7663

 $\downarrow 35.6\%$

↓ 12.5%

7086

↓ 13.1%

7625

 $\downarrow 31.6\%$

7661

 $\downarrow 28.8\%$

9726

 $\downarrow 31.1\%$

 $\downarrow 34.8\%$

NaN

7546

7613

 $\downarrow 27.3$

 $\downarrow 30.7$

21.6

 $^{126.5}$

20%	25%	
0	0	
0	0	
0	0	
NaN	NaN	
0	0	
NaN	NaN	
9461	9293	
7462	7362	
9608	9402	
27.3%	$\downarrow 23.9\%$	
7547	7458	
30.7%	$\downarrow 25.5\%$	
0	0	
0	0	
0	0	
NaN	NaN	
0	0	
NaN	NaN	
9491	9366	
7459	7399	
9601	9461	
21.6%	$\downarrow 15.0\%$	
7536	7457	
26.5%	$\downarrow 16.5\%$	

			_					
G	Bagging	Certification	Metric	5%	10%	15%	20%	25%
		Sample-wise	CR	7432	0	0	0	0
			CA	7283	0	0	0	0
	Vanilla	Collective	CR M_{ATK}	7727 ↓ 11.5%	0 NaN	0 NaN	0 NaN	0 NaN
			$M_{ m ATK}$	7515 ↓ 13.8%	0 NaN	0 NaN	0 NaN	0 NaN
50	Hash	Sample-wise	CR	9576	9307	8932	8671	8238
			CA	8768	8635	8408	8246	7943
1		Collective	CR M_{ATK}	9726 ↓ 35.4%	9410 ↓ 14.9%	9024 ↓ 8.61%	8761 ↓ 6.77%	8329 ↓ 5.169
	11001		$M_{ m ATK}$	8833 ↓ 32.8%	8719 ↓ 25.4%	8493 ↓ 15.2%	8327 ↓ 11.2%	8022 ↓ 7.729
		Decomposition	CR M_{ATK}	9666 ↓ 21.2%	9472 ↓ 23.8%	9124 ↓ 18.0%	8887 ↓ 16.2%	8491 ↓ 14.49
			$M_{ m ATK}$	8812 ↓ 22.2%	8716 ↓ 24.5%	8527 ↓ 21.3%	8385 ↓ 19.3%	8119 ↓ 17.29
		Sample-wise	CR	7548	0	0	0	0
		•	CA	7321	0	0	0	0
	Vanilla	Collective	$M_{ m ATK}$	8053 ↓ 20.6%	0 NaN	0 NaN	0 NaN	0 NaN
			$M_{ m ATK}$	7746 ↓ 29.4%	0 NaN	0 NaN	0 NaN	0 NaN
100		Sample-wise	CR	9538	9080	8653	8249	7823
На			CA	8554	8316	8049	7797	7486
	Hash	Sh Collective Decomposition	CR M_{ATK}	9611 ↓ 15.8%	9167 ↓ 9.46%	8754 ↓ 7.50%	8344 ↓ 5.42%	7912 ↓ 4.09
			$M_{ m ATK}$	8610 ↓ 26.7%	8375 ↓ 13.2%	8116 ↓ 9.37%	7857 ↓ 6.20%	7558
			CR M_{ATK}	9631 ↓ 20.1%	9232 ↓ 16.5%	8837 ↓ 13.6%	8450 ↓ 11.5%	8036 ↓ 9.78
			$M_{ m ATK}$	8595 ↓ 19.5%	8407 ↓ 20.3%	8152 ↓ 14.4%	7917 ↓ 12.4%	7639 ↓ 12.0

G	Bagging	Certification	Metric	5%	10%	15%	20%	25%
50	Dagging		CR	2737	0	0	0	0
		Sample-wise	CA	2621	0	0	0	0
	Vanilla	Collective	CR	3621	0	0	0	0
			$M_{ m ATK}$	↓ 12.2%	NaN	NaN	NaN	NaN
			CA	3335	0	0	0	0
			$M_{ m ATK}$	↓ 16.3%	NaN	NaN	NaN	NaN
50		Sample-wise	CR	8221	7268	6067	5320	4229
			CA	6305	5864	5186	4705	3884
			CR	8393	7428	6204	5435	4290
	Hash	Collective	$M_{ m ATK}$	↓ 9.67%	↓ 5.86%	↓ 3.48%	↓ 2.46%	↓ 1.06%
			CA	6410	5985	5342	4848	4006
			$M_{ m ATK}$	↓ 15.2%	↓ 10.7%	↓ 8.62%	↓ 6.24%	↓ 3.92%
			CR M_{ATK}	8694 ↓ 26.6%	7854 ↓ 21.4%	6686 ↓ 15.7%	5912 ↓ 12.6%	4826 ↓ 10.3%
		Decomposition	CA	6490	6147	5553	5113	4341
			$M_{ m ATK}$	↓ 26.8%	↓ 25.0%	↓ 20.2%	↓ 17.8%	↓ 14.7%
		Sample-wise	CR	2621	0	0	0	0
	Vanilla		CA	1876	0	0	0	0
		Collective	CR	2657	0	0	0	0
			$M_{ m ATK}$	↓ 7.93%	NaN	NaN	NaN	NaN
			CA	2394	0	0	0	0
100			$M_{ m ATK}$	↓ 11.8%	NaN	NaN	NaN	NaN
	Hash	Sample-wise	CR	7685	5962	4612	3504	2593
			CA	5396	4571	3787	3008	2315
		Collective	CR	7744	5974	4618	3509	2598
			$M_{ m ATK}$	↓ 2.54%	↓ 0.30%	↓ 0.11%	↓ 0.08%	↓ 0.07%
			CA	5475	4650	3825	3030	2330
			M _{ATK}	↓ 9.21%	↓ 4.69%	↓ 1.54%	↓ 0.68%	↓ 0.38%
		Decomposition	CR M_{ATK}	8137 ↓ 19.5%	6469 ↓ 12.5%	5061 ↓ 8.33%	4035 ↓ 8.17%	2987 ↓ 5.32%
			CA	5570	4841	4098	3338	2635
			$M_{ m ATK}$	↓ 20.3%	↓ 16.0%	↓ 12.6%	↓ 10.2%	↓ 8.12%

Electricity Dataset

FMNIST Dataset

CIFAR-10 Dataset

6 Collective certification consistently certifies a much tighter M_{ATK} (the maximum number of simultaneously changed predictions) than the sample-wise certification

Paper: https://arxiv.org/abs/2205.13176

Github: https://github.com/Emiyalzn/ICML22-CRB

Contact: Ruoxin Chen, chenruoxin@sjtu.edu.cn

Jie Li, <u>lijiecs@sjtu.edu.cn</u>