

Reinforcement Learning with Action-Free Pre-Training from Videos

Younggyo Seo, Kimin Lee, Stephen James, Pieter Abbeel

Introduction

Unsupervised pre-training is successful in CV / NLP

How to do pre-training for RL? Still an open question!

Pre-training from Diverse & Action-Free Datasets

• Main idea: Pre-train representations from Videos

Why?

- Diverse
- Readily available
- Rich visual information
- Temporal information is crucial for sequential decision making problems

- We present APV: Action-free Pre-training from Videos
 - Step 1: Pre-train an action-free video prediction model

Action-free Pre-training from Videos

Learns both visual representations and dynamics from videos

- Step 1: Pre-train an action-free video prediction model
 - Train an action-free recurrent state-space model [Hafner'19]

Representation model: $z_t \sim q_{\phi}(z_t \mid z_{t-1}, o_t)$

Transition model: $\hat{z}_t \sim p_{\phi}(\hat{z}_t \mid z_{t-1})$

Image decoder: $\hat{o}_t \sim p_{\phi}(\hat{o}_t \mid z_t)$

[Hafner'19] Hafner, Danijar, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. "Learning latent dynamics for planning from pixels." In International conference on machine learning, pp. 2555-2565. PMLR, 2019.

- We present APV: Action-free Pre-training from Videos
 - Step 2: Fine-tuning for learning action-conditional world model

Action-free Pre-training from Videos

Fine-tuning

- We present APV: Action-free Pre-training from Videos
 - Step 2: Fine-tuning for learning action-conditional world model

• Main challenge:

 How to incorporate additional actions to the pre-trained action-free prediction model?

- We present APV: Action-free Pre-training from Videos
 - Step 2: Fine-tuning for learning action-conditional world model

• Main challenge:

- How to incorporate additional actions to the pre-trained action-free prediction model?
- We should design a framework for smooth transition from action-free pre-training to action-conditional fine-tuning!

- Step 2: Fine-tuning for learning action-conditional world model
 - Train a stacked latent dynamics model

- Additional component: Video-based Intrinsic Bonus
 - Motivation: Utilize pre-trained representations for exploration

- Additional component: Video-based Intrinsic Bonus
 - Motivation: Utilize pre-trained representations for exploration

Increase the diversity of visited
 trajectories instead of single states

$$y_t = \text{Avg}(z_{t:t+\tau})$$
 $r_t^{\text{int}} \doteq ||\psi(y_t) - \psi(y_t^k)||_2$
 ψ is a random projection

Experimental Setup

- For behavior learning, we utilize DreamerV2 [Hafner'21]
- We consider two **transfer** setups

[Hafner'21] Hafner, Danijar, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. "Mastering atari with discrete world models." International Conference on Learning Representations, 2021

Results on Visual Manipulation Tasks

Experimental Setup

- For behavior learning, we utilize DreamerV2 [Hafner'21]
- We consider two **transfer** setups

Experimental Setup

• We also consider videos from a different task but with very similar visuals

Results on Visual Locomotion Tasks

 Pre-training with in-domain locomotion videos improves performance on locomotion tasks

Results on Visual Locomotion Tasks

- Pre-training with in-domain locomotion videos improves performance on locomotion tasks
- Interestingly, pre-training with out-of-domain manipulation videos can also improve performance

Conclusion

- We introduce APV, a visual model-based RL framework that can leverage diverse, action-free videos for pre-training
- More experimental results and analysis are available in paper
 - Please visit Hall E #916

