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Motivation: designing a BERT-style pre-training for ASR

● Challenge: BERT use discrete tokens but speech signals are continuous 
● How can we bridge such a gap?

Self-supervised learning for ASR

Previous belief: “One must learns the 
content representation of the speech”



“We need representation learning for self-supervised learning”

But we now need to develop both self-supervised 
learning AND representation learning

The two objectives are not necessarily compatible 
and limit the design of the model architecture

Can we challenge the status quo and avoid 
representation learning?
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Generate quantized prediction 
targets with randomly-initialized 
codebook and projection matrix

Freeze the codebook and the 
projection matrix

BEST-RQ BERT-based Speech pre-Training with 
Random-projection Quantizer



Non-streaming

Streaming

LibriSpeech

Pre-train on LibriLight, fine-tune on LibriSpeech



Multilingual 
LibriSpeech

Pre-train on XLS-R unsupervised data without 
VoxLingua-107.



Large-scale
Multilingual 
Set

Pre-train on Multilingual YouTube (250k~800k hrs per language).
Fine-tune on Multilingual Voice Search (1k hrs per language).
Same recipe as (Zhang et al., 2021)



Better understand random-projection quantizers
Do random-projection quantizers provide good speech representations?

Study: compare two types of quantizers and two types of experiments

Two quantizers

● Random-projection quantizer: No representation learning
● VQ-VAE: Has representation learning

Two experiments

● Use quantized code as input to train ASR: Tells us the representation quality
● Use quantized code as self-supervised learning prediction targets: Tells us the 

effectiveness for self-supervised learning



Quantization quality

● As input: VQ-VAE provides much better quality
● As targets: no difference in self-supervised learning

Representation quality does not directly translate to 
self-supervised learning quality



Hypothesis: self-supervised 
learning learn to mitigate the quality 
gap from sufficient amount of 
unsupervised data

Study: compare different 
unsupervise data size

Quantization quality matters more 
when unsupervised data size is 
limited

The gap disappear as the 
unsupervised data size increase

rq: random-projection quantizer

tvae: transformer VQ-VAE



Conclusions

● Random quantizer is simple and effective for self-supervised learning

○ Does not require representation learning

● Random quantizer do not capture content information as efficient as other 
learned representations

○ But it capture essential information for self-supervised learning

● Codebook utilization is the most critical metric for pre-training


