

Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes

Hongyi Guo¹, Qi Cai¹, Yufeng Zhang¹, Zhuoran Yang², Zhaoran Wang¹

¹Northwestern University

²Yale University

July 21, 2022

Background

POMDP

Offline reinforcement learning (RL) for partially observable Markov decision processes (POMDPs).

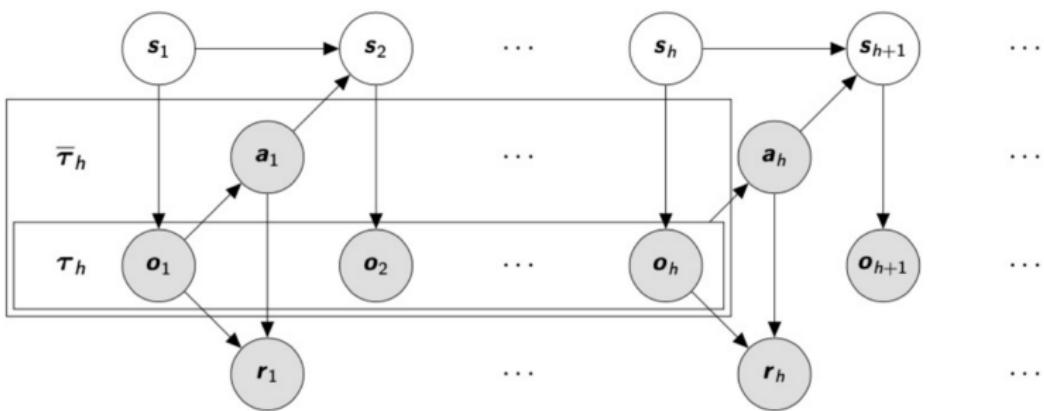


Figure: POMDP

Overview

POMDP

Introduction

Algorithm

- Linear POMDP (emission kernel and transition kernel are linear in known feature mappings)
- Undercompleteness assumption (observation dist. \Rightarrow state dist.)

Overview

POMDP

Introduction

Algorithm

- Linear POMDP (emission kernel and transition kernel are linear in known feature mappings)
- Undercompleteness assumption (observation dist. \Rightarrow state dist.)
- A pessimistic offline RL algorithm
- Finite sample guarantee $\tilde{O}(1/\epsilon^2)$

Intuition

POMDP

Introduction

Algorithm

Define random functions

$$X_{h,a}(o) = \mathbb{1}_{\text{do}(A_{h-1}=a)}^{\bar{\pi}} \{O_h = o\},$$

$$Y_{h,a,a'}(o, o') = \mathbb{1}_{\text{do}(A_{h-1:h}=(a,a'))}^{\bar{\pi}} \{O_{h:h+1} = (o, o')\}.$$

Intuition

POMDP

Introduction

Algorithm

Define random functions

$$X_{h,a}(o) = \mathbb{1}_{\text{do}(A_{h-1}=a)}^{\bar{\pi}} \{O_h = o\},$$

$$Y_{h,a,a'}(o, o') = \mathbb{1}_{\text{do}(A_{h-1:h}=(a,a'))}^{\bar{\pi}} \{O_{h:h+1} = (o, o')\}.$$

Regress Y on X and in the mean time we can solve the model parameter θ :

$$Y_{h,a,a'} = \mathbb{F}_{h,a'}^\theta X_{h,a} + U_{h,a,a'}, \quad (2.1)$$

where \mathbb{F} is some linear operator and $U_{h,a,a'}$ is the zero-mean perturbation term.

Intuition

Define random functions

$$X_{h,a}(o) = \mathbb{1}_{\text{do}(A_{h-1}=a)}^{\bar{\pi}} \{O_h = o\},$$
$$Y_{h,a,a'}(o, o') = \mathbb{1}_{\text{do}(A_{h-1:h}=(a,a'))}^{\bar{\pi}} \{O_{h:h+1} = (o, o')\}.$$

Regress Y on X and in the mean time we can solve the model parameter θ :

$$Y_{h,a,a'} = \mathbb{F}_{h,a'}^\theta X_{h,a} + U_{h,a,a'}, \quad (2.1)$$

where \mathbb{F} is some linear operator and $U_{h,a,a'}$ is the zero-mean perturbation term.

- U is correlated with X ! \Rightarrow IV regression.

IV Regression

An instrumental variable (IV) is correlated with X but uncorrelated with the perturbation U . We choose $Z_h = O_{h-1}$ as the IV.

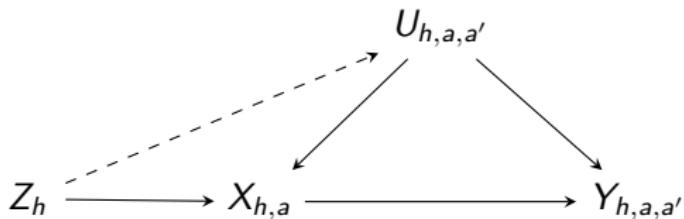


Figure: The relationship between $X_{h,a}$, $Y_{h,a,a'}$, $U_{h,a,a'}$, and Z_h . The arrows indicates the dependency between those variables. The dashed arrow indicates two uncorrelated variables. In this figure, $U_{h,a,a'}$ affects both $X_{h,a}$ and $Y_{h,a,a'}$ directly, Z_h only affects $X_{h,a}$ directly, and Z_h and $U_{h,a,a'}$ are uncorrelated.

Algorithm Overview

POMDP

Introduction

Algorithm

With the help of the IV, we have

$$\mathbb{E}[Y_{h,a,a'} | Z_h] = \mathbb{F}_{h,a'}^\theta \mathbb{E}[X_{h,a} | Z_h]. \quad (2.2)$$

Our algorithm has the follows steps:

- 1 Construct estimators of $\mathbb{E}[Y_{h,a,a'} | Z_h]$ and $\mathbb{E}[X_{h,a} | Z_h]$ from the dataset.
- 2 Construct confidence region $\widehat{\Theta}$ of the model parameter so that $\mathbb{E}[Y_{h,a,a'} | Z_h]$ and $\mathbb{F}_{h,a'}^\theta \mathbb{E}[X_{h,a} | Z_h]$ are close enough for $\theta \in \widehat{\Theta}$.
- 3 Pessimism Planning

$$(\widehat{\pi}, \widehat{\theta}) = \underset{\pi \in \Pi}{\operatorname{argmax}} \underset{\theta \in \widehat{\Theta}}{\operatorname{argmin}} \mathcal{J}(\theta, \pi).$$

Thank you!

Please check our poster @Hall E