# Frustratingly Easy Transferability Estimation

Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, Ying Wei

Tencent Al Lab, City University of Hong Kong

### Transferability

#### An Important Question in Transfer Learning

Which pre-trained model (source/architecture) and which layers of it should be transferred to benefit the target task the most?

Source Selection, Model Selection, Layer Selection



#### Transferability measure - Goal

To select a pre-trained model prior to training on a target task



#### Desired properties

- 1. Effectiveness
- 2. Computation-efficiency
  - Free of training on target tasks
  - Free of optimization
- 3. Widely applicable to
  - different per-training models
  - different layers
- 4. [Optional] Free of assessing source data

## Summary of the existing transferability measures and ours

|                                                                                                                                               |                          | Computation                | n-efficiency         | Wide Applic                                   | cation                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|----------------------|-----------------------------------------------|-------------------------------|--|
|                                                                                                                                               |                          |                            |                      |                                               |                               |  |
| Measures                                                                                                                                      | Free of Assessing Source | Free of Training on Target | Free of Optimization | Applicable to Unsupervised Pre-trained Models | Applicable to Layer Selection |  |
| Taskonomy (Zamir et al., 2018) Task2Vec (Achille et al., 2019) RSA (Dwivedi & Roig, 2019) DEPARA (Song et al., 2020)  NLEEP (Li et al., 2021) | ×<br>×<br>√<br>√         | ×<br>×<br>×<br>×           | ×                    | √<br>√<br>√<br>√                              | ✓<br>×<br>√<br>√              |  |
| DS (Cui et al., 2018) (Zhang et al., 2021) [1] (Tong et al., 2021) [2] NCE (Tran et al., 2019)                                                | ×<br>×<br>×              | √<br>√<br>√<br>√           | ×<br>×<br>×<br>√     | √<br>×<br>×<br>×                              | ×<br>×<br>×<br>×              |  |
| H-Score (Bao et al., 2019)<br>LogME (You et al., 2021)                                                                                        | <b>√</b> ✓               | √<br>√                     | × ×                  | <b>√</b> ✓                                    | ××                            |  |
| LEEP (Nguyen et al., 2020) TransRate                                                                                                          | <b>√</b>                 | <b>√ √</b>                 | <b>√</b>             | ×                                             | × √                           |  |

<sup>[1]</sup> Zhang, G., Zhao, H., Yu, Y., and Poupart, P. Quantifying and improving transferability in domain generalization. NeurIPS, 2021.

<sup>[2]</sup> Tong, X., Xu, X., Huang, S.-L., and Zheng, L. A mathemat- ical framework for quantifying transferability in multi- source transfer learning. NeurIPS, 2021.

#### Computation-Efficient Transferability Estimation: TransRate

#### Our Propose: TransRate

Mutual Information between the feature extracted by the pre-trained model and the labels.

$$TrR_{T_S \to T_t}(g) := h(Z) - h(Z|Y) \approx H(Z^{\Delta}) - H(Z^{\Delta}|Y)$$

Applicable to layer selection.

#### Relation to transfer performance

**Proposition 1**. Assume the target task has a uniform label distribution, i.e.  $p(Y = y^c) = \frac{1}{c} holds$  for all c = 1, 2, ..., C. We then have:

$$TrR_{T_S \to T_t}(g) - H(Y) \gtrsim \mathcal{L}(g, w^*) \gtrsim TrR_{T_S \to T_t}(g) - H(Y) - H(Z^{\Delta})$$

## Entropy, Rate Distortion ( $\varepsilon$ -Entropy) and Coding Rate

#### Difficulty of Entropy (Mutual Information) Estimation

bin-based requires an extremely large memory

capacity.

kernel density estimator require sufficient number of sample

k-NN estimator require exhaustive computation of

nearest neighbors of all examples

NN-based require training a neural network

(e.g. MINE)

NOT Applicable

## Entropy, Rate Distortion ( $\varepsilon$ -Entropy) and Coding Rate

**Rate Distortion** 

 $R(Z,\epsilon)$ 

$$R(Z,\epsilon) = \min_{p(\tilde{Z}|Z); d(\tilde{z},z) \le \epsilon} MI(Z,\tilde{Z})$$

where  $\tilde{Z}$  is a reconstructed version of Z.



Shannon Entropy

$$\lim_{\Delta\to 0} H(Z^{\Delta})$$



Coding Rate  $R(\hat{Z}, \epsilon)$ 

$$Rig(\hat{Z},\epsilonig)$$

$$R(Z, \epsilon) = h(Z) + \frac{1}{2} \log \frac{1}{2\pi e \epsilon} + o(1)$$

Let  $\Delta = \sqrt{2\pi e\epsilon}$  and let  $\Delta \rightarrow 0$ ,

$$R(Z,\epsilon) = H(Z^{\Delta}) + o(1)$$

$$R(\hat{Z}, \epsilon) = \frac{1}{2} \log \det \left( I + \frac{1}{\epsilon} \frac{\hat{Z}\hat{Z}^T}{n} \right)$$

where  $\hat{Z}$  is the features matrix

## Coding Rate based TransRate

Our Propose: TransRate

$$TrR_{T_S \to T_t}(g) \approx H(Z^{\Delta}) - H(Z^{\Delta}|Y) \approx R(\hat{Z}, \epsilon) - R(\hat{Z}, \epsilon|Y)$$

We resort to coding rate  $R(\hat{Z}, \epsilon)$  as an approximation of  $H(Z^{\Delta})$  with a small  $\Delta = \sqrt{2\pi e \epsilon}$ .

$$H(Z^{\Delta}) \approx R(\hat{Z}, \epsilon) = \frac{1}{2} \log \det \left( I + \frac{1}{\epsilon} \frac{\hat{Z}\hat{Z}^T}{n} \right)$$

$$H(Z^{\Delta}|Y) \approx \sum_{c=1}^{C} \frac{n_c}{n} R(\hat{Z}^c, \epsilon) = \sum_{c=1}^{C} \frac{n_c}{2n} \log \det \left( I + \frac{1}{\epsilon} \frac{\hat{Z}^c \hat{Z}^{c^T}}{n} \right) := R(\hat{Z}, \epsilon|Y)$$

Computational Efficient!

# Experiments

32 pre-trained models and 16 downstream tasks

Source Selection, Model Selction, Layer Selection

Supervised-trained models, Self-supervised trained models

Classification tasks, Regression tasks

Evaluation measure: correlation coefficient

Pearson  $R_p$ , Kendall's  $\tau_K$ , Weighted  $\tau_w$ 

#### **Model Selection**



- ResNet-18
- ResNet-34
- ResNet-50
- MobileNet0.5
- **★** MobileNet1.0
- ★ DenseNet121
- DenseNet169
- ▲ DenseNet201
- Inception V3
- NASNet1.0

|           | Target Datasets | Measures     | NCE    | LEEP    | LFC     | H-Score | LogME  | TransRate |
|-----------|-----------------|--------------|--------|---------|---------|---------|--------|-----------|
|           |                 | $R_p$        |        | 0.8506  |         | 0.5016  | 0.4965 | 0.8780    |
| CIFAR-100 | $	au_K$         | 0.7436       | 0.7179 | -0.0256 | 0.4872  | 0.4103  | 0.9231 |           |
|           |                 | $	au_\omega$ | 0.8315 | 0.8485  | -0.0126 | 0.6058  | 0.5130 | 0.8498    |

## Layer Selection



|                   | Measures       | LFC     | H-Score | LogME   | TransRate |
|-------------------|----------------|---------|---------|---------|-----------|
| Source: SVHN      | $R_p$          | -0.1895 | -0.5320 | -0.3352 | 0.9769    |
| Model: ResNet-20  | $	au_K$        | -0.4667 | -0.2000 | -0.0667 | 0.8667    |
| Wiodel. ResNet-20 | $	au_{\omega}$ | -0.5497 | -0.2993 | -0.2340 | 0.9265    |

# Comparison of the computational cost

|                                      | ResNet-18, Full Data                         |                                          | ResNet-18, Small Data                       |                                            | ResNet-50, Full Data                           |                                          |
|--------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------------|
|                                      | Wall-clock time (second)                     | Speedup                                  | Wall-clock time (second)                    | Speedup                                    | Wall-clock time (second)                       | Speedup                                  |
| Fine-tune                            | 8399.65                                      | 1×                                       | 882.33                                      | 1×                                         | $2.3 \times 10^4$                              | 1×                                       |
| Extract feature                      | 30.1416                                      |                                          | 3.2986                                      |                                            | 72.787                                         |                                          |
| NCE<br>LEEP                          | 0.9126<br>0.7771                             | 9,204×<br>10,808×                        | 0.2119<br>0.1211                            | 4,164×<br>7,286×                           | 2.1220<br>1.9152                               | 10,839×<br>12,009×                       |
| LFC<br>H-Score<br>LogME<br>TransRate | 30.1416<br>1.6285<br>9.2737<br><b>1.3410</b> | 279×<br>5,158×<br>906×<br><b>6,264</b> × | 0.7987<br>0.3998<br>2.0224<br><b>0.2697</b> | 1,106×<br>2,207×<br>436×<br><b>3,272</b> × | 149.3040<br>13.07<br>50.1797<br><b>10.6498</b> | 154×<br>1,760×<br>458×<br><b>2,160</b> × |

## Summary

- A simple, efficient, and effective transferability measure named TransRate
  - Applicable to layer selection
- Coding Rate as an effective alternative to entropy in mutual information estimation
- Remarkably good performance in experiments in model selection, layer selection.