Frustratingly Easy Transferability Estimation Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, Ying Wei Tencent Al Lab, City University of Hong Kong ### Transferability #### An Important Question in Transfer Learning Which pre-trained model (source/architecture) and which layers of it should be transferred to benefit the target task the most? Source Selection, Model Selection, Layer Selection #### Transferability measure - Goal To select a pre-trained model prior to training on a target task #### Desired properties - 1. Effectiveness - 2. Computation-efficiency - Free of training on target tasks - Free of optimization - 3. Widely applicable to - different per-training models - different layers - 4. [Optional] Free of assessing source data ## Summary of the existing transferability measures and ours | | | Computation | n-efficiency | Wide Applic | cation | | |---|--------------------------|----------------------------|----------------------|---|-------------------------------|--| | | | | | | | | | Measures | Free of Assessing Source | Free of Training on Target | Free of Optimization | Applicable to Unsupervised Pre-trained Models | Applicable to Layer Selection | | | Taskonomy (Zamir et al., 2018) Task2Vec (Achille et al., 2019) RSA (Dwivedi & Roig, 2019) DEPARA (Song et al., 2020) NLEEP (Li et al., 2021) | ×
×
√
√ | ×
×
×
× | × | √
√
√
√ | ✓
×
√
√ | | | DS (Cui et al., 2018) (Zhang et al., 2021) [1] (Tong et al., 2021) [2] NCE (Tran et al., 2019) | ×
×
× | √
√
√
√ | ×
×
×
√ | √
×
×
× | ×
×
×
× | | | H-Score (Bao et al., 2019)
LogME (You et al., 2021) | √ ✓ | √
√ | × × | √ ✓ | ×× | | | LEEP (Nguyen et al., 2020) TransRate | √ | √ √ | √ | × | × √ | | ^[1] Zhang, G., Zhao, H., Yu, Y., and Poupart, P. Quantifying and improving transferability in domain generalization. NeurIPS, 2021. ^[2] Tong, X., Xu, X., Huang, S.-L., and Zheng, L. A mathemat- ical framework for quantifying transferability in multi- source transfer learning. NeurIPS, 2021. #### Computation-Efficient Transferability Estimation: TransRate #### Our Propose: TransRate Mutual Information between the feature extracted by the pre-trained model and the labels. $$TrR_{T_S \to T_t}(g) := h(Z) - h(Z|Y) \approx H(Z^{\Delta}) - H(Z^{\Delta}|Y)$$ Applicable to layer selection. #### Relation to transfer performance **Proposition 1**. Assume the target task has a uniform label distribution, i.e. $p(Y = y^c) = \frac{1}{c} holds$ for all c = 1, 2, ..., C. We then have: $$TrR_{T_S \to T_t}(g) - H(Y) \gtrsim \mathcal{L}(g, w^*) \gtrsim TrR_{T_S \to T_t}(g) - H(Y) - H(Z^{\Delta})$$ ## Entropy, Rate Distortion (ε -Entropy) and Coding Rate #### Difficulty of Entropy (Mutual Information) Estimation bin-based requires an extremely large memory capacity. kernel density estimator require sufficient number of sample k-NN estimator require exhaustive computation of nearest neighbors of all examples NN-based require training a neural network (e.g. MINE) NOT Applicable ## Entropy, Rate Distortion (ε -Entropy) and Coding Rate **Rate Distortion** $R(Z,\epsilon)$ $$R(Z,\epsilon) = \min_{p(\tilde{Z}|Z); d(\tilde{z},z) \le \epsilon} MI(Z,\tilde{Z})$$ where \tilde{Z} is a reconstructed version of Z. Shannon Entropy $$\lim_{\Delta\to 0} H(Z^{\Delta})$$ Coding Rate $R(\hat{Z}, \epsilon)$ $$Rig(\hat{Z},\epsilonig)$$ $$R(Z, \epsilon) = h(Z) + \frac{1}{2} \log \frac{1}{2\pi e \epsilon} + o(1)$$ Let $\Delta = \sqrt{2\pi e\epsilon}$ and let $\Delta \rightarrow 0$, $$R(Z,\epsilon) = H(Z^{\Delta}) + o(1)$$ $$R(\hat{Z}, \epsilon) = \frac{1}{2} \log \det \left(I + \frac{1}{\epsilon} \frac{\hat{Z}\hat{Z}^T}{n} \right)$$ where \hat{Z} is the features matrix ## Coding Rate based TransRate Our Propose: TransRate $$TrR_{T_S \to T_t}(g) \approx H(Z^{\Delta}) - H(Z^{\Delta}|Y) \approx R(\hat{Z}, \epsilon) - R(\hat{Z}, \epsilon|Y)$$ We resort to coding rate $R(\hat{Z}, \epsilon)$ as an approximation of $H(Z^{\Delta})$ with a small $\Delta = \sqrt{2\pi e \epsilon}$. $$H(Z^{\Delta}) \approx R(\hat{Z}, \epsilon) = \frac{1}{2} \log \det \left(I + \frac{1}{\epsilon} \frac{\hat{Z}\hat{Z}^T}{n} \right)$$ $$H(Z^{\Delta}|Y) \approx \sum_{c=1}^{C} \frac{n_c}{n} R(\hat{Z}^c, \epsilon) = \sum_{c=1}^{C} \frac{n_c}{2n} \log \det \left(I + \frac{1}{\epsilon} \frac{\hat{Z}^c \hat{Z}^{c^T}}{n} \right) := R(\hat{Z}, \epsilon|Y)$$ Computational Efficient! # Experiments 32 pre-trained models and 16 downstream tasks Source Selection, Model Selction, Layer Selection Supervised-trained models, Self-supervised trained models Classification tasks, Regression tasks Evaluation measure: correlation coefficient Pearson R_p , Kendall's τ_K , Weighted τ_w #### **Model Selection** - ResNet-18 - ResNet-34 - ResNet-50 - MobileNet0.5 - **★** MobileNet1.0 - ★ DenseNet121 - DenseNet169 - ▲ DenseNet201 - Inception V3 - NASNet1.0 | | Target Datasets | Measures | NCE | LEEP | LFC | H-Score | LogME | TransRate | |-----------|-----------------|--------------|--------|---------|---------|---------|--------|-----------| | | | R_p | | 0.8506 | | 0.5016 | 0.4965 | 0.8780 | | CIFAR-100 | $ au_K$ | 0.7436 | 0.7179 | -0.0256 | 0.4872 | 0.4103 | 0.9231 | | | | | $ au_\omega$ | 0.8315 | 0.8485 | -0.0126 | 0.6058 | 0.5130 | 0.8498 | ## Layer Selection | | Measures | LFC | H-Score | LogME | TransRate | |-------------------|----------------|---------|---------|---------|-----------| | Source: SVHN | R_p | -0.1895 | -0.5320 | -0.3352 | 0.9769 | | Model: ResNet-20 | $ au_K$ | -0.4667 | -0.2000 | -0.0667 | 0.8667 | | Wiodel. ResNet-20 | $ au_{\omega}$ | -0.5497 | -0.2993 | -0.2340 | 0.9265 | # Comparison of the computational cost | | ResNet-18, Full Data | | ResNet-18, Small Data | | ResNet-50, Full Data | | |--------------------------------------|--|--|---|--|--|--| | | Wall-clock time (second) | Speedup | Wall-clock time (second) | Speedup | Wall-clock time (second) | Speedup | | Fine-tune | 8399.65 | 1× | 882.33 | 1× | 2.3×10^4 | 1× | | Extract feature | 30.1416 | | 3.2986 | | 72.787 | | | NCE
LEEP | 0.9126
0.7771 | 9,204×
10,808× | 0.2119
0.1211 | 4,164×
7,286× | 2.1220
1.9152 | 10,839×
12,009× | | LFC
H-Score
LogME
TransRate | 30.1416
1.6285
9.2737
1.3410 | 279×
5,158×
906×
6,264 × | 0.7987
0.3998
2.0224
0.2697 | 1,106×
2,207×
436×
3,272 × | 149.3040
13.07
50.1797
10.6498 | 154×
1,760×
458×
2,160 × | ## Summary - A simple, efficient, and effective transferability measure named TransRate - Applicable to layer selection - Coding Rate as an effective alternative to entropy in mutual information estimation - Remarkably good performance in experiments in model selection, layer selection.