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Intervene on Smoking:

P(Death|do(Smoking))

do(Smoking=1): Force to smoke
do(Smoking=0): Force to stop smoking
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Causal Effect Identification

- Causal graph G:

Identifiability
- G and P(V) are given.
- Goal: uniquely compute a causal query P(S|do(T)).

General identifiability

- G and a set of distributions { P(Y1|do(A1)), ..., P(Yi|do(Ak))}
are given.

- Goal: uniquely compute a causal query P(S|do(T)).
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Intervention Design

What is known?!+2

-Let Y, := V\AZ, Vi.

- G and a set of intervention sets Ay, ..., Ay are given.

- Whether a causal query P(S|do(T')) is identifiable from

P .= {P(Vi|do(A1)), ..., P(Yi|do(Ay))}.

1Lee et. al., “General identifiability with arbitrary surrogate experiments,” UAI 2020. |:P _L
=
2Kivva et. al., “Revisiting the general identifiability problem,” UAI 2022.
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What is known?!+2

-Let Y, := V\AZ, Vi.

- G and a set of intervention sets Ay, ..., Ay are given.

- Whether a causal query P(S|do(T')) is identifiable from

P .= {P(Vi|do(A1)), ..., P(Yi|do(Ay))}.

The intervention design problem

- Having P is costly.

- What is the set P with minimum cost that identifies
P(S|do(T))?

1Lee et. al., “General identifiability with arbitrary surrogate experiments,” UAI 2020. I:P|:L
=
2Kivva et. al., “Revisiting the general identifiability problem,” UAI 2022.
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Intervention Design

Minimum cost intervention design problem

- Causal graph G is known.
- Two disjoint subsets S, 7 C V are given.
- Goal: Find a collection A* = {4, ..., Ay, } of subsets of V s.t.

- cost of A* is minimum,

- P(S|do(T)) is identifiable form
{P(V\ Ai|do(A1)), ..., P(V \ Ap|do(Am)) } -

Assumption
Cost function is additive, i.e., C(-) : V — R=°, and

C(4;) = ) _ C(a).

a€A;
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Definition: Let IDg(S,T") denote the set of all collections of
subsets of V', e.g., A = {Ay,..., A}, where A; C V| s.t.

- P(S|do(T)) is identifiable in G from
{P(V\ Ai]do(Ay)),...,P(V \ Ap|do(An)) } .
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Definition: Let IDg(S,T") denote the set of all collections of
subsets of V', e.g., A = {Ay,..., A}, where A; C V| s.t.

- P(S|do(T)) is identifiable in G from
{P(V\ Ai]do(Ay)),...,P(V \ Ap|do(An)) } .
Note: [IDg(S,T)| < 22"

Problem:

Al | C(A). 1
Srcarg, min > 1A CA) (1)



Reduction to Exponentioal

Definition (C-component)

Q[S] is a c-component.
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Theorem

- Let A={Ay, ..., Am}m>1be a member of IDg(S,T).

- Suppose S is a subsel of variables s.t. Gg) is a c-component.
Then,

JACV st. A={A} € IDg(S,T) and C(A) < C(A).
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Reduction to Exponential 8

Theorem

- Let A={Ay, ..., Am}m>1be a member of IDg(S,T).

- Suppose S is a subsel of variables s.t. Gg) is a c-component.
Then,

JACV st. A={A} € IDg(S,T) and C(A) < C(A).
- More precisely, A :=J", A;\ S.

Exponential Formulation

Asr € i C(a). 2
Sir € OB 1) D e O @

Note: [ID{(S,T)| < 2!V
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Theorem

There exists a polynomial-time reduction from the minimum
vertex cover problem to the minimum cost intervention design
problem.
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Theorem

There exists a polynomial-time reduction from the minimum
vertex cover problem to the minimum cost intervention design
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Figure: Minimum Vertex Cover (MVC)
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Theorem

There exists a polynomial-time reduction from the minimum
vertex cover problem to the minimum cost intervention design
problem.

Corollary

Minimum cost intervention design problem is NP-hard.

Remark
-Let C(v) =1, YvoeV.
- The problem is still NP-hard.



Simplification

Definition: Let Q[S] denotes the causal effect of do(V '\ S) on S,

Q[S] := P(S|do(V \ S)).

3Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.
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- Ancg\p(S) are ancestors of S in G after deleting 7.
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Simplification 11

Definition: Let Q[S] denotes the causal effect of do(V '\ S) on S,
Q[S] := P(S|do(V'\ 5)).

- P(S|do(T)) is identifiable in G iff Q[Ancg 7 (S5)] is identifiable3.
- Ancg\p(S) are ancestors of S in G after deleting 7.

Original problem:

Aér € ar min C(a).
ST gAeIDl(S,T) ZaeA ( )

Simplified problem: We can assume T'=V \ S.

A% i C(a).
5 € arg AeIDr?(lél,V\S) ZaeA (a)

3Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.



Summary 12

i A).
arg, _min >, CWA)

ar min C(a).
gAeIDl(S,T) acA (a)

ar C(a).

min Z
A€ID(S,V\S) acA



Minimum Hitting Set Formulation

Definition (Hedge)
- Let S be a subset of V s.t. Q[S} is a c-component in G. Subset
F CV forms a hedge for Q[S] if

-SCF,

- F' is the set of ancestors of S in Q[F},

- G|p) s a c-component.
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Definition
- Let S be a subset of V s.t. Q[S} is a c-component in G. Subset
F CV forms a hedge for Q[S] if

-SCF,

- I is the set of ancestors of S in Gjpy,

- §|F is a c-component.

Fact
- Let S be a subset of V' s.t. Gig) is a c-component.
- Let {F1, ..., Fy,} denotes the set of all hedges of Q[S] in G.

- Then, Ag € ID(S,V '\ S) iff

As N (F;\ 8) # 0, Vi.
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Definition
- Let S be a subset of V s.t. Q[S} is a c-component in G. Subset
F CV forms a hedge for Q[5] if

-SCF,

- I is the set of ancestors of S in Gp),

- g[ F is a c-component.

Fact
- Let S be a subset of V' s.t. Q[S} is a c-component.
- Let {Fy, ..., F,,,} denotes the set of all hedges of Q[S] in G.

- Then A% is a solution to the simplified problem iff it is a
solution to the MWHS problem for the sets {F1 \ S, ..., Fn \ S},
with the weight function w(-) := C(+).



Minimum Weighted Hitting Set (MWHS) Formulation 16

(I) Enumerate the hedges F;, (II) Solve the MWHS problem.
Algorithm 1: Min-cost intervention(.S, G).

1: F+0, H<+ Hhull(S g[v\paﬁ(s)])
2: if Q[5] is ID return pa*’(S)

3: while True do

4:  while True do

5: a < argminge i\ s C(a)

6: if Q[S} is ID in Q[H\{a}] then
7 F+«FU{H}

8: break

9: else

10: H + Hhull(S, Q[H\{(,,}])

11: A < solve min hitting set for {F'\ S|F € F}
12 if AUpa®(S) € ID4(S) then

13: return (AU pa®(5))

14: H + Hhull(S, Q[V\(AupaH<S))])




Results on Random Graphs
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Figure: Number of hedges formed for Q[S5].
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Tackling the Computational Complexity

» Heuristic algorithms: A few of them discussed in the paper.
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» Structural side information:

Normalized Regret
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- If G is tree, polynomial algorithms exist.
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Tackling the Computational Complexity

» Heuristic algorithms: A few of them discussed in the paper.
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Normalized Regret

» Structural side information:
- If G is tree, polynomial algorithms exist.
» Additional side information:
- Under certain properties of the C(+), the problem can
be simplified.

» Future work: Approximation algorithms.
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