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Intervention Design 4

What is known?1,2

- Let Yi := V \Ai, ∀i.
- G and a set of intervention sets A1, ..., Ak are given.
- Whether a causal query P (S|do(T )) is identifiable from

P := {P (Y1|do(A1)), ..., P (Yk|do(Ak))}.

The intervention design problem
- Having P is costly.
- What is the set P with minimum cost that identifies
P (S|do(T ))?

1
Lee et. al., “General identifiability with arbitrary surrogate experiments,” UAI 2020.

2
Kivva et. al., “Revisiting the general identifiability problem,” UAI 2022.
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Minimum cost intervention design problem

- Causal graph G is known.
- Two disjoint subsets S, T ⊆ V are given.

- Goal: Find a collection A∗ = {A1, ..., Am} of subsets of V s.t.

- cost of A∗ is minimum,
- P (S|do(T )) is identifiable form{

P
(
V \A1|do(A1)

)
, ..., P

(
V \Am|do(Am)

)}
.

Assumption
Cost function is additive, i.e., C(·) : V → R≥0, and

C(Ai) =
∑
a∈Ai

C(a).
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Doubly Exponential Formulation 6

Definition: Let IDG(S, T ) denote the set of all collections of
subsets of V , e.g., A = {A1, ..., Am}, where Ai ⊆ V , s.t.

- P (S|do(T )) is identifiable in G from{
P
(
V \A1|do(A1)

)
, ..., P

(
V \Am|do(Am)

)}
.

Note: |IDG(S, T )| ≤ 22
|V | .

a

Problem:

A∗
S,T ∈ arg min

A∈IDG(S,T )

∑
A∈A

C(A). (1)
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Definition (C-component)
G[S] is a c-component.

s1

s4

s2s3

s5

s6

S



Reduction to Exponential 8

Theorem
- Let A={A1, ..., Am}m>1be a member of IDG(S, T ).
- Suppose S is a subset of variables s.t. G[S] is a c-component.
Then,

∃Ã ⊆ V s.t. Ã = {Ã} ∈ IDG(S, T ) and C(Ã) ≤ C(A).

- More precisely, Ã :=
⋃m

i=1Ai \ S.

Exponential Formulation

A∗
S,T ∈ arg min

A∈ID1(S,T )

∑
a∈A

C(a). (2)

Note: |ID1(S, T )| ≤ 2|V |.
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⋃m

i=1Ai \ S.

Exponential Formulation

A∗
S,T ∈ arg min

A∈ID1(S,T )

∑
a∈A

C(a). (2)

Note: |ID1(S, T )| ≤ 2|V |.



Reduction to Exponential 8

Theorem
- Let A={A1, ..., Am}m>1be a member of IDG(S, T ).
- Suppose S is a subset of variables s.t. G[S] is a c-component.
Then,
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Can we do better? 9

Theorem
There exists a polynomial-time reduction from the minimum
vertex cover problem to the minimum cost intervention design
problem.

Figure: Minimum Vertex Cover (MVC)
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vertex cover problem to the minimum cost intervention design
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Corollary
Minimum cost intervention design problem is NP-hard.

Remark
- Let C(v) = 1, ∀v ∈ V .
- The problem is still NP-hard.
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Simplification 11

Definition: Let Q[S] denotes the causal effect of do(V \ S) on S,

Q[S] := P (S|do(V \ S)).

- P (S|do(T )) is identifiable in G iff Q[AncG\T (S)] is identifiable3.

- AncG\T (S) are ancestors of S in G after deleting T .

Original problem:

A∗
S,T ∈ arg min

A∈ID1(S,T )

∑
a∈A

C(a).

Simplified problem: We can assume T = V \ S.

A∗
S ∈ arg min

A∈ID1(S,V \S)

∑
a∈A

C(a).

3
Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.
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arg min
A∈IDG(S,T )
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Minimum Hitting Set Formulation 13

Definition (Hedge)
- Let S be a subset of V s.t. G[S] is a c-component in G. Subset
F ⊆ V forms a hedge for Q[S] if

- S ⊊ F ,
- F is the set of ancestors of S in G[F ],
- G[F ] is a c-component.
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- G[F ] is a c-component.

Fact
- Let S be a subset of V s.t. G[S] is a c-component.
- Let {F1, ..., Fm} denotes the set of all hedges of Q[S] in G.

- Then, AS ∈ ID1(S, V \ S) iff

AS ∩ (Fi \ S) ̸= ∅, ∀i.
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Minimum Weighted Hitting Set (MWHS) Formulation 16

(I) Enumerate the hedges Fi, (II) Solve the MWHS problem.
Algorithm 1: Min-cost intervention(S,G).

1: F← ∅, H ← Hhull(S,G[V \pa↔(S)])
2: if Q[S] is ID return pa↔(S)
3: while True do
4: while True do
5: a← argmina∈H\S C(a)
6: if Q[S] is ID in G[H\{a}] then
7: F← F ∪ {H}
8: break
9: else

10: H ← Hhull(S,G[H\{a}])
11: A← solve min hitting set for {F \ S|F ∈ F}
12: if A ∪ pa↔(S) ∈ ID1(S) then
13: return (A ∪ pa↔(S))
14: H ← Hhull(S,G[V \(A∪pa↔(S))])
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Tackling the Computational Complexity 18

▶ Heuristic algorithms: A few of them discussed in the paper.
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▶ Structural side information:
- If G is tree, polynomial algorithms exist.

▶ Additional side information:
- Under certain properties of the C(·), the problem can

be simplified.
▶ Future work: Approximation algorithms.
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