DNS: Determinantal Point Process
Based Neural Network Sampling
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Ensembles in Reinforcement Learning
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Ensembles for Overestimation Bias
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Averaged-DQN: Variance Reduction and Stabilization for Deep Learning (Oron Anschel et al) Reinforcement
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DNS: Determinantal Point Process Based Neural
Network Sampling

* Long training time and high computation requirements can make
ensemble RL infeasible for wide scale use.

* We can exploit the collapse for critics to speed up training time
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DPP: Determinantal Point Process

* A Determinantal point process (DPP) is a random point process useful
for the combinatorial problem of selecting a diverse sample from a
set.

* A DPP for a given finite set defines a probability distribution over
subsets, where subsets containing diverse items have high probability
and are thus more likely to be selected.
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Determinantal Point Process Based Neural
Network Sampling
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Results

Table 1: Max average return for 10 runs of 300K time steps. Maximum value for each task 1s bolded.
+ corresponds to a single standard deviation over runs

Environment Baseline Random DNS

Ant-v2 2543.1 425957 2666.8 +2262.6 3167.2 + 2484.7
HalfCheetah-v2  9818.8 4+ 14452 94743 +£991.1  9931.0 4 819.1
Hopper-v2 25442 + 1468.21 23749 + 1405.8 2967.8 + 1128.9
Walker2d-v2 2414.4 +1580.0  1946.4 £+ 1287.9 2802.3 + 1272.1
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Computation Cost
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(a) Computation cost of the backpropagation method (b) Average wall-clock training time in hours
in terms of petaFLOPS
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Average Return
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DNS vs MED-RL
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(c) Hopper-v2
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