Value Function based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems

Lucy Gao, Jane J. Ye, Haian Yin, Shangzhi Zeng, Jin Zhang

Hyperparameter Bilevel Program(BLP)

• We consider the following BLP framework:

$$\min_{x \in \mathbb{R}^n, \lambda \in \mathbb{R}^J_+} L(x)$$
s.t. $x \in \underset{x' \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ l(x') + \sum_{i=1}^J \lambda_i P_i(x') \right\}$

- λ is a vector of hyperparameters
- $L: \mathbb{R}^n \to \mathbb{R}$ is the convex function for the validation error
- $l: \mathbb{R}^n \to \mathbb{R}$ is the convex function for the training error
- $P_i: \mathbb{R}^n \to \mathbb{R}_+, i = 1, \dots, J$ are convex regularizers

Examples of hyperparameter BLPs

Machine learning algorithm	x	λ	L(x)/l(x)	$\sum_{i=1}^{J} \lambda_i P_i(x)$
elastic net	$oldsymbol{eta}$	λ_1,λ_2	$rac{1}{2} \sum_{i \in I_{ ext{val}}/i \in I_{ ext{tr}}} b_i - oldsymbol{eta}^ op \mathbf{a}_i ^2$	$\lambda_1 \ oldsymbol{eta}\ _1 + rac{\lambda_2}{2} \ oldsymbol{eta}\ _2^2$
sparse group lasso	$oldsymbol{eta}$	$\lambda \in \mathbb{R}_+^{M+1}$	$rac{1}{2} \sum_{i \in I_{ ext{val}}/i \in I_{ ext{tr}}} b_i - oldsymbol{eta}^ op \mathbf{a}_i ^2$	$\sum_{m=1}^{M} \lambda_m \ oldsymbol{eta}^{(m)}\ _2 + \lambda_{M+1} \ oldsymbol{eta}\ _1$
low-rank matrix completion	$\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{\Gamma}$	$\lambda \in \mathbb{R}_+^{2G+1}$	$\sum_{(i,j)\in\Omega_{\text{val}}/(i,j)\in\Omega_{\text{tr}}} \frac{1}{2} M_{ij} - \mathbf{x}_i \boldsymbol{\theta} - \mathbf{z}_j \boldsymbol{\beta} - \Gamma_{ij} ^2$	$\lambda_0 \ \Gamma\ _* + \sum_{g=1}^G \lambda_g \ \boldsymbol{\theta}^{(g)}\ _2 + \sum_{g=1}^G \lambda_{g+G} \ \boldsymbol{\beta}^{(g)}\ _2$
support vector machine	\mathbf{w}, c	$\lambda, \ ar{\mathbf{w}}$	$\sum_{j \in I_{\text{val}}/j \in I_{\text{tr}}} \max(1 - b_j(\mathbf{w}^{\top} \mathbf{a}_j - c), 0)$	$rac{\lambda}{2}\ \mathbf{w}\ ^2$

Hyperparameter Decoupling

• The Lower Level (LL) problem

$$\min_{x'} l(x') + \sum_{i=1}^{J} \lambda_i P_i(x').$$

• The hyperparameter variables λ can be decoupled from the regularization term by introducing a new variable r

$$\min_{x'} l(x')$$
 s.t. $P_i(x') \le r_i, i = 1, ..., J$.

• This suggests working with the following BLP:

$$\min_{x,r \in \mathbb{R}_+^J} L(x)$$
s.t. $x \in \arg\min_{x'} \{l(x') \text{ s.t. } P_i(x') \leq r_i, i = 1, \dots, J\}.$

Single-level DC Reformulation

• The value function of the LL problem

$$v(r) := \min \{l(x) \text{ s.t. } P_i(x) \le r_i, i = 1, \dots, J\}.$$

- Thanks to full convexity, v(r) is convex.
- Using the value function, we can reformulate BLP as the following Difference-of-Convex(DC) program:

$$\min_{x,r \in \mathbb{R}_+^J} L(x)$$
s.t. $l(x) - v(r) \le 0, P_i(x) \le r_i, i = 1, \dots, J.$

VF-iDCA

• Given a current iterate (x^k, r^k) for each k, solving the LL problem parameterized by r^k

$$\tilde{x}^k \in \arg\min_{x} \ l(x) \text{ s.t. } P_i(x) \le r_i^k, \ i = 1, \dots, J,$$

- Find a corresponding Karush-Kuhn-Tucker (KKT) multiplier γ^k .
- Construct a linearization of v(r) at r^k ,

$$V_k(x,r) := l(x) - l(\tilde{x}^k) + \langle \gamma^k, r - r^k \rangle.$$

• Update $z^{k+1} := (x^{k+1}, r^{k+1})$ by solving the strongly convex subproblem

$$\min_{x,r \in \mathbb{R}_+^J} \phi_k(x,r) := L(x) + \frac{\rho}{2} \|z - z^k\|^2 + \alpha_k \max_{i=1,\dots,J} \{0, V_k(x,r), P_i(x) - r_i\},$$

where $\rho > 0$, and α_k represents the adaptive penalty parameter, z := (x, r), $z^k := (x^k, r^k)$

Theoretical Investigations

Theorem. Assume that L(x), l(x) and P(x) are semi-algebraic functions. Suppose that $\{z^k := (x^k, r^k)\}$ and $\{\alpha_k\}$ generated by VF-iDCA are bounded, L(x) is bounded below and there exists $\delta > 0$ such that $r_i^k \geq \delta$ for all k and $i = 1, \ldots, J$. Then $\{z^k\}$ converges to a KKT point of DC program.

Numerical Experiments on Synthetic Data

Table 1. Elastic net problems on synthetic data.

Settings	Method	Time	Val. Err.	Test Err.
$ I_{\rm tr} = 100$ $ I_{\rm val} = 20$ $ I_{\rm test} = 250$ p = 250	Grid Random TPE IGJO IFDM VF-iDCA	3.10 ± 0.44 3.55 ± 0.58 5.41 ± 0.75 2.04 ± 1.46 1.33 ± 0.55 0.91 ± 0.19	6.16 ± 2.35 5.98 ± 2.24 6.05 ± 2.30 4.43 ± 1.77 4.41 ± 0.96 1.95 ± 0.81	6.68 ± 1.16 6.67 ± 1.15 6.77 ± 1.04 5.13 ± 1.37 4.77 ± 1.46 3.99 ± 0.69
$ I_{\rm tr} = 100$ $ I_{\rm val} = 100$ $ I_{\rm test} = 250$ p = 250	Grid Random TPE IGJO IFDM VF-iDCA	3.17 ± 0.43 5.29 ± 0.60 5.40 ± 0.84 2.42 ± 1.30 1.30 ± 0.41 1.37 ± 0.29	6.51 ± 1.53 6.44 ± 1.53 6.44 ± 1.53 4.71 ± 1.32 4.78 ± 1.12 3.04 ± 0.74	6.82 ± 1.10 6.77 ± 1.14 6.76 ± 1.06 4.88 ± 1.30 4.61 ± 1.12 3.58 ± 0.60
$ I_{\rm tr} = 100$ $ I_{\rm val} = 100$ $ I_{\rm test} = 100$ p = 2500	Grid Random TPE IGJO IFDM VF-iDCA	19.05 ± 1.63 35.42 ± 3.55 32.17 ± 7.40 16.12 ± 40.95 4.38 ± 2.53 19.97 ± 5.17	7.95 ± 1.10 7.90 ± 1.09 7.89 ± 1.11 7.99 ± 1.18 7.97 ± 0.83 1.61 ± 1.85	8.54 ± 0.81 8.52 ± 0.79 8.60 ± 0.87 8.41 ± 0.86 8.53 ± 1.53 5.10 ± 1.07

Competitors:

- Implicit Differentiation: IGJO (Feng & Simon, 2018) and IFDM (Bertrand et al., 2020).
- Grid Search
- Random Search
- **TPE**: Tree-structured Parzen Estimator approach (Bergstra et al., 2013)

Table 2. Sparse group lasso problems on synthetic data.

Settings	Method	$\#\lambda$	Time	Val. Err.	Test Err.
p = 600 $M = 30$	Grid	2	30.38 ± 1.82	42.45 ± 7.67	44.56 ± 7.33
	Random	31	28.54 ± 1.51	39.27 ± 7.32	43.00 ± 8.83
	TPE	31	47.07 ± 4.01	35.69 ± 5.92	40.59 ± 6.67
	IGJO	31	69.62 ± 47.76	30.16 ± 7.41	39.28 ± 6.56
	VF-iDCA	31	$\textbf{8.13}\pm\textbf{1.20}$	0.01 ± 0.00	38.50 ± 6.00
p = 600 $M = 300$	Grid	2	20.84 ± 1.04	41.88 ± 7.64	44.90 ± 7.02
	Random	301	18.94 ± 1.09	43.92 ± 8.77	47.90 ± 8.55
	TPE	301	76.82 ± 2.55	39.22 ± 6.26	42.93 ± 8.00
	IGJO	301	160.85 ± 71.50	20.37 ± 4.46	38.52 ± 6.78
	VF-iDCA	301	56.73 ± 92.48	19.61 ± 8.33	$\textbf{33.55}\pm\textbf{4.71}$
p = 1200 $M = 300$	Grid	2	87.20 ± 5.85	49.56 ± 10.76	51.85 ± 12.90
	Random	301	73.75 ± 4.28	53.65 ± 12.03	55.84 ± 14.25
	TPE	301	117.07 ± 5.66	45.94 ± 9.30	51.67 ± 12.29
	IGJO	301	98.35 ± 47.47	20.70 ± 4.70	38.90 ± 7.20
	VF-iDCA	301	$\textbf{23.41}\pm\textbf{1.31}$	17.90 ± 3.47	$\textbf{36.90}\pm\textbf{7.48}$

Table 3. Low-rank matrix completion problems on synthetic data.

Method	$\#\lambda$	Time	Val. Err.	Test Err.
Grid	2	20.67 ± 0.90	0.71 ± 0.21	0.76 ± 0.20
Random	25	32.49 ± 1.84	0.73 ± 0.21	0.80 ± 0.20
TPE	25	35.05 ± 9.37	0.68 ± 0.20	0.76 ± 0.18
IGJO	25	1268.65 ± 365.99	0.68 ± 0.21	0.72 ± 0.18
VF-iDCA	25	51.55 ± 10.43	0.06 ± 0.07	$\textbf{0.70}\pm\textbf{0.16}$

Application to real data

Figure 1. Comparison of the algorithms on SVM problem (validation error and test error versus time) for 6 datasets: liver-disorders_scale, diabetes_scale, breast-cancer_scale, sonar, a1a, w1a

Competitors:

- Grid Search
- Random Search
- **TPE**: Tree-structured Parzen Estimator approach (Bergstra et al., 2013)

Thanks for your attention

Code is available at

https://github.com/SUSTech-Optimization/VF-iDCA