Value Function based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems Lucy Gao, Jane J. Ye, Haian Yin, Shangzhi Zeng, Jin Zhang #### Hyperparameter Bilevel Program(BLP) • We consider the following BLP framework: $$\min_{x \in \mathbb{R}^n, \lambda \in \mathbb{R}^J_+} L(x)$$ s.t. $x \in \underset{x' \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ l(x') + \sum_{i=1}^J \lambda_i P_i(x') \right\}$ - λ is a vector of hyperparameters - $L: \mathbb{R}^n \to \mathbb{R}$ is the convex function for the validation error - $l: \mathbb{R}^n \to \mathbb{R}$ is the convex function for the training error - $P_i: \mathbb{R}^n \to \mathbb{R}_+, i = 1, \dots, J$ are convex regularizers # Examples of hyperparameter BLPs | Machine learning algorithm | x | λ | L(x)/l(x) | $\sum_{i=1}^{J} \lambda_i P_i(x)$ | |----------------------------|--|-----------------------------------|---|---| | elastic net | $oldsymbol{eta}$ | λ_1,λ_2 | $ rac{1}{2} \sum_{i \in I_{ ext{val}}/i \in I_{ ext{tr}}} b_i - oldsymbol{eta}^ op \mathbf{a}_i ^2$ | $\lambda_1 \ oldsymbol{eta}\ _1 + rac{\lambda_2}{2} \ oldsymbol{eta}\ _2^2$ | | sparse group lasso | $oldsymbol{eta}$ | $\lambda \in \mathbb{R}_+^{M+1}$ | $ rac{1}{2} \sum_{i \in I_{ ext{val}}/i \in I_{ ext{tr}}} b_i - oldsymbol{eta}^ op \mathbf{a}_i ^2$ | $\sum_{m=1}^{M} \lambda_m \ oldsymbol{eta}^{(m)}\ _2 + \lambda_{M+1} \ oldsymbol{eta}\ _1$ | | low-rank matrix completion | $\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{\Gamma}$ | $\lambda \in \mathbb{R}_+^{2G+1}$ | $\sum_{(i,j)\in\Omega_{\text{val}}/(i,j)\in\Omega_{\text{tr}}} \frac{1}{2} M_{ij} - \mathbf{x}_i \boldsymbol{\theta} - \mathbf{z}_j \boldsymbol{\beta} - \Gamma_{ij} ^2$ | $\lambda_0 \ \Gamma\ _* + \sum_{g=1}^G \lambda_g \ \boldsymbol{\theta}^{(g)}\ _2 + \sum_{g=1}^G \lambda_{g+G} \ \boldsymbol{\beta}^{(g)}\ _2$ | | support vector machine | \mathbf{w}, c | $\lambda, \ ar{\mathbf{w}}$ | $\sum_{j \in I_{\text{val}}/j \in I_{\text{tr}}} \max(1 - b_j(\mathbf{w}^{\top} \mathbf{a}_j - c), 0)$ | $ rac{\lambda}{2}\ \mathbf{w}\ ^2$ | ### Hyperparameter Decoupling • The Lower Level (LL) problem $$\min_{x'} l(x') + \sum_{i=1}^{J} \lambda_i P_i(x').$$ • The hyperparameter variables λ can be decoupled from the regularization term by introducing a new variable r $$\min_{x'} l(x')$$ s.t. $P_i(x') \le r_i, i = 1, ..., J$. • This suggests working with the following BLP: $$\min_{x,r \in \mathbb{R}_+^J} L(x)$$ s.t. $x \in \arg\min_{x'} \{l(x') \text{ s.t. } P_i(x') \leq r_i, i = 1, \dots, J\}.$ ### Single-level DC Reformulation • The value function of the LL problem $$v(r) := \min \{l(x) \text{ s.t. } P_i(x) \le r_i, i = 1, \dots, J\}.$$ - Thanks to full convexity, v(r) is convex. - Using the value function, we can reformulate BLP as the following Difference-of-Convex(DC) program: $$\min_{x,r \in \mathbb{R}_+^J} L(x)$$ s.t. $l(x) - v(r) \le 0, P_i(x) \le r_i, i = 1, \dots, J.$ #### VF-iDCA • Given a current iterate (x^k, r^k) for each k, solving the LL problem parameterized by r^k $$\tilde{x}^k \in \arg\min_{x} \ l(x) \text{ s.t. } P_i(x) \le r_i^k, \ i = 1, \dots, J,$$ - Find a corresponding Karush-Kuhn-Tucker (KKT) multiplier γ^k . - Construct a linearization of v(r) at r^k , $$V_k(x,r) := l(x) - l(\tilde{x}^k) + \langle \gamma^k, r - r^k \rangle.$$ • Update $z^{k+1} := (x^{k+1}, r^{k+1})$ by solving the strongly convex subproblem $$\min_{x,r \in \mathbb{R}_+^J} \phi_k(x,r) := L(x) + \frac{\rho}{2} \|z - z^k\|^2 + \alpha_k \max_{i=1,\dots,J} \{0, V_k(x,r), P_i(x) - r_i\},$$ where $\rho > 0$, and α_k represents the adaptive penalty parameter, z := (x, r), $z^k := (x^k, r^k)$ # Theoretical Investigations **Theorem**. Assume that L(x), l(x) and P(x) are semi-algebraic functions. Suppose that $\{z^k := (x^k, r^k)\}$ and $\{\alpha_k\}$ generated by VF-iDCA are bounded, L(x) is bounded below and there exists $\delta > 0$ such that $r_i^k \geq \delta$ for all k and $i = 1, \ldots, J$. Then $\{z^k\}$ converges to a KKT point of DC program. # Numerical Experiments on Synthetic Data **Table 1.** Elastic net problems on synthetic data. | Settings | Method | Time | Val. Err. | Test Err. | |---|--|--|---|--| | $ I_{\rm tr} = 100$
$ I_{\rm val} = 20$
$ I_{\rm test} = 250$
p = 250 | Grid
Random
TPE
IGJO
IFDM
VF-iDCA | 3.10 ± 0.44 3.55 ± 0.58 5.41 ± 0.75 2.04 ± 1.46 1.33 ± 0.55 0.91 ± 0.19 | 6.16 ± 2.35 5.98 ± 2.24 6.05 ± 2.30 4.43 ± 1.77 4.41 ± 0.96 1.95 ± 0.81 | 6.68 ± 1.16 6.67 ± 1.15 6.77 ± 1.04 5.13 ± 1.37 4.77 ± 1.46 3.99 ± 0.69 | | $ I_{\rm tr} = 100$
$ I_{\rm val} = 100$
$ I_{\rm test} = 250$
p = 250 | Grid
Random
TPE
IGJO
IFDM
VF-iDCA | 3.17 ± 0.43
5.29 ± 0.60
5.40 ± 0.84
2.42 ± 1.30
1.30 ± 0.41
1.37 ± 0.29 | 6.51 ± 1.53 6.44 ± 1.53 6.44 ± 1.53 4.71 ± 1.32 4.78 ± 1.12 3.04 ± 0.74 | 6.82 ± 1.10
6.77 ± 1.14
6.76 ± 1.06
4.88 ± 1.30
4.61 ± 1.12
3.58 ± 0.60 | | $ I_{\rm tr} = 100$
$ I_{\rm val} = 100$
$ I_{\rm test} = 100$
p = 2500 | Grid
Random
TPE
IGJO
IFDM
VF-iDCA | 19.05 ± 1.63 35.42 ± 3.55 32.17 ± 7.40 16.12 ± 40.95 4.38 ± 2.53 19.97 ± 5.17 | 7.95 ± 1.10 7.90 ± 1.09 7.89 ± 1.11 7.99 ± 1.18 7.97 ± 0.83 1.61 ± 1.85 | 8.54 ± 0.81 8.52 ± 0.79 8.60 ± 0.87 8.41 ± 0.86 8.53 ± 1.53 5.10 ± 1.07 | #### **Competitors**: - Implicit Differentiation: IGJO (Feng & Simon, 2018) and IFDM (Bertrand et al., 2020). - Grid Search - Random Search - **TPE**: Tree-structured Parzen Estimator approach (Bergstra et al., 2013) **Table 2.** Sparse group lasso problems on synthetic data. | Settings | Method | $\#\lambda$ | Time | Val. Err. | Test Err. | |--------------------|---------|-------------|----------------------------------|-------------------|----------------------------------| | p = 600 $M = 30$ | Grid | 2 | 30.38 ± 1.82 | 42.45 ± 7.67 | 44.56 ± 7.33 | | | Random | 31 | 28.54 ± 1.51 | 39.27 ± 7.32 | 43.00 ± 8.83 | | | TPE | 31 | 47.07 ± 4.01 | 35.69 ± 5.92 | 40.59 ± 6.67 | | | IGJO | 31 | 69.62 ± 47.76 | 30.16 ± 7.41 | 39.28 ± 6.56 | | | VF-iDCA | 31 | $\textbf{8.13}\pm\textbf{1.20}$ | 0.01 ± 0.00 | 38.50 ± 6.00 | | p = 600 $M = 300$ | Grid | 2 | 20.84 ± 1.04 | 41.88 ± 7.64 | 44.90 ± 7.02 | | | Random | 301 | 18.94 ± 1.09 | 43.92 ± 8.77 | 47.90 ± 8.55 | | | TPE | 301 | 76.82 ± 2.55 | 39.22 ± 6.26 | 42.93 ± 8.00 | | | IGJO | 301 | 160.85 ± 71.50 | 20.37 ± 4.46 | 38.52 ± 6.78 | | | VF-iDCA | 301 | 56.73 ± 92.48 | 19.61 ± 8.33 | $\textbf{33.55}\pm\textbf{4.71}$ | | p = 1200 $M = 300$ | Grid | 2 | 87.20 ± 5.85 | 49.56 ± 10.76 | 51.85 ± 12.90 | | | Random | 301 | 73.75 ± 4.28 | 53.65 ± 12.03 | 55.84 ± 14.25 | | | TPE | 301 | 117.07 ± 5.66 | 45.94 ± 9.30 | 51.67 ± 12.29 | | | IGJO | 301 | 98.35 ± 47.47 | 20.70 ± 4.70 | 38.90 ± 7.20 | | | VF-iDCA | 301 | $\textbf{23.41}\pm\textbf{1.31}$ | 17.90 ± 3.47 | $\textbf{36.90}\pm\textbf{7.48}$ | | | | | | | | **Table 3.** Low-rank matrix completion problems on synthetic data. | Method | $\#\lambda$ | Time | Val. Err. | Test Err. | |---------|-------------|----------------------|-----------------|---------------------------------| | Grid | 2 | 20.67 ± 0.90 | 0.71 ± 0.21 | 0.76 ± 0.20 | | Random | 25 | 32.49 ± 1.84 | 0.73 ± 0.21 | 0.80 ± 0.20 | | TPE | 25 | 35.05 ± 9.37 | 0.68 ± 0.20 | 0.76 ± 0.18 | | IGJO | 25 | 1268.65 ± 365.99 | 0.68 ± 0.21 | 0.72 ± 0.18 | | VF-iDCA | 25 | 51.55 ± 10.43 | 0.06 ± 0.07 | $\textbf{0.70}\pm\textbf{0.16}$ | ## Application to real data Figure 1. Comparison of the algorithms on SVM problem (validation error and test error versus time) for 6 datasets: liver-disorders_scale, diabetes_scale, breast-cancer_scale, sonar, a1a, w1a #### **Competitors**: - Grid Search - Random Search - **TPE**: Tree-structured Parzen Estimator approach (Bergstra et al., 2013) #### Thanks for your attention Code is available at https://github.com/SUSTech-Optimization/VF-iDCA