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Shift due to corruptions

Shifts due to corruptions

Hendrycks & Dietterich (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. 4
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Neural networks under input corruptions

5

Corruption severity



Neural networks under input corruptions

Typical 
behavior

6

Corruption severity



Neural networks under input corruptions

Typical 
behavior

7

Corruption severity



Neural networks under input corruptions

Typical 
behavior

Desirable 
behavior

5

Corruption severity



Bayesian neural networks (BNNs)

Bayesian neural 
network

Standard 
neural network

6Neal (1996). Bayesian Learning for Neural Networks.

Thomas Bayes



Bayesian neural networks (BNNs)

Bayesian neural 
network

Standard 
neural network

6Neal (1996). Bayesian Learning for Neural Networks.

Thomas Bayes

Are BNNs more robust to corruptions?



BNNs perform worse than MAP models under corruptions1

1 Izmailov et al. (2021). What are Bayesian neural network posteriors really like?
2 Izmailov et al. (2021). Dangers of Bayesian model averaging under covariate shift?

ResNet-20, CIFAR-10-C
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BNNs perform worse than MAP models under corruptions1

1 Izmailov et al. (2021). What are Bayesian neural network posteriors really like?
2 Izmailov et al. (2021). Dangers of Bayesian model averaging under covariate shift?

ResNet-20, CIFAR-10-C

Gaussian prior does not provide useful 
inductive biases to handle input corruptions.2
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Node-based Bayesian neural networks

Weight-BNNs

Node-BNNs

Eg: MC-Dropout (Gal et al, 2015), Rank-1 BNNs (Dusenberry et al, 2020) 8



Node BNNs

NodeBNN with latent variables
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Node BNNs

NodeBNN with latent variables
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NodeBNN with latent variables
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Previous layer’s output



Node BNNs

Two types of parameters:
1. Weights and biases

è Pretrained or MAP solution

10



Node BNNs

Two types of parameters:
1. Weights and biases

è Pretrained or MAP solution
2. Node variables

è Infer posterior

10



Node BNNs

Two types of parameters:
1. Weights and biases

è Pretrained or MAP solution
2. Node variables

è Infer posterior

10



Node BNNs

Two types of parameters:
1. Weights and biases

è Pretrained or MAP solution
2. Node variables

è Infer posterior

è Node-BNNs are efficient alternatives to standard weight-BNNs
10



Node-BNNs outperform MAP under corruptions

Dusenberry et al. (2020). Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors.

WideResNet-28-10 / CIFAR-10-C
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Node-BNN



Our paper’s goals

Proposing a method to improve the robustness of node-BNNs

Providing insights into the robustness of node-BNNs under 
input corruptions.
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Why do node-BNNs generalize 
better under input corruptions?
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The latent distribution              induces implicit input distribution
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Finding the implicit corruption

15



Approximating the implicit corruption

Given                            ,  approximate          by minimizing
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Approximating the implicit corruption

Output matching L2-regularization 16

Given                            ,  approximate          by minimizing



Example of implicit corruptions

Severity
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Entropy of latent variables and implicit corruptions
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Entropy of latent variables and implicit corruptions
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We show:
1. Increasing entropy of latent variables         increase the diversity of implicit 

corruptions

High entropy



Entropy of latent variables and implicit corruptions

We show:
1. Increasing entropy of latent variables         increase the diversity of implicit 

corruptions
2. Training with more diverse implicit corruptions, node-based BNNs become more 

robust against natural corruptions. 
18
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High entropy = more robust node-BNNs?

Low entropy model High entropy model

Same ConvNet architecture
Train on CIFAR-10

Test on CIFAR-10-C
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High entropy = more robust node-BNNs?

YES
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Is a model robust against its own corruptions?

Low entropy model High entropy model

We use each model to generate a set of corrupted test images, then evaluate each 
model on its own generated corruptions.
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Is a model robust against its own corruptions?

Performance on clean 
images

Corruption severity 22
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Is a model robust against its own corruptions?

Performance 
under corruptions

Corruption severity 22

Yes! (in this small experiment)

Performance on clean 
images



How robust is a model against the other model’s corruptions?

Corruption severity
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The high-entropy model can handle 
corruptions better



How to increase the latent 
entropy?
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Variational inference
Complex posterior 
distribution

Blei et al. (2017). Variational Inference: A Review for Statisticians. 25
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Variational posterior
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Variational posterior

Dirac delta measure
(for MAP estimation)
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Variational posterior

Dirac delta measure
(for MAP estimation) Mixture of Gaussians
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ELBO optimization of           
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Evidence lower-bound
(ELBO)



expected log-likelihood

KL divergence log prior

ELBO optimization of           

Evidence lower-bound
(ELBO)
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Entropic regularization

The original ELBO
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Entropic regularization

The original ELBO The      entropy
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The      – ELBO = tempered posterior

Maximizing the      – ELBO is equivalent to minimizing: 

Mandt et al (2016). Variational Tempering



The      – ELBO = tempered posterior

Maximizing the      – ELBO is equivalent to minimizing: 

Temperature
29Mandt et al (2016). Variational Tempering



enlargens posterior

‘hot’ posterior

30

temperature



Experiments
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Effects of      on corruption robustness

Validation Test Mild 
corruption

Severe 
corruption
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Network: VGG16
Train: CIFAR-100 
Test: CIFAR-100-C
K: number of Gaussian components in       

1. High’ish entropy provides 
best performance

2. Optimising too much 
entropy worsens



Optimal
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More severe corruptions require higher optimal 
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Robust learning under label noise

Memorizing random labels is harder than learning generalizable patterns1

Wrongly labelled sample can’t be memorized if we add enough corruptions

1Arpit et al. (2017). A closer look at memorization in deep networks.



Robust learning under label noise

ResNet18 / CIFAR-10
40% of training labels are corrupted

Train NLL of wrongly labelled samples (in orange) increase much 
faster than the train NLL of correctly labelled samples (in blue)
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Benchmark comparison

ResNet18 / CIFAR-100

Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning
Zhang et al. (2020). Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
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Benchmark comparison

PreActResNet18 / TinyImageNet
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Code is available at https://github.com/AaltoPML/node-BNN-covariate-shift

Conclusion

1
Latent variables simulate a set of implicit corruptions, and implicitly training under 
these corruptions, node-based BNNs become robust against natural corruptions.

38
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Maximizing entropy of the latent variables increases diversity of implicit corruptions, 
and thus node-BNN robustness.

3
Latent entropy controls the trade-off between in-distribution performance and 
performance under corruptions, with more severe corruptions require higher optimal 
latent entropy which decreases the in-distribution performance.

4
As a side effect, our method also provides robustness against noisy training labels.

38

https://github.com/AaltoPML/node-BNN-covariate-shift

