Tackling covariate shift with node-based Bayesian neural networks

Trung Trinh

Markus Heinonen

Luigi Acerbi

Samuel Kaski

Background

Covariate shift

Shift due to corruptions

Shifts due to corruptions

Noise

Blur

Saturation

Corruption severity

Corruption severity

Typical behavior

Corruption severity

Typical behavior

Corruption severity

Typical behavior

Desirable behavior

Bayesian neural networks (BNNs)

Standard neural network

Bayesian neural network

Thomas Bayes

Bayesian neural networks (BNNs)

Standard neural network

Bayesian neural network

Thomas Bayes

Are BNNs more robust to corruptions?

BNNs perform worse than MAP models under corruptions¹

¹ Izmailov et al. (2021). What are Bayesian neural network posteriors really like?

² Izmailov et al. (2021). Dangers of Bayesian model averaging under covariate shift?

BNNs perform worse than MAP models under corruptions¹

Gaussian prior does not provide useful inductive biases to handle input corruptions.²

¹Izmailov et al. (2021). What are Bayesian neural network posteriors really like?

² Izmailov et al. (2021). Dangers of Bayesian model averaging under covariate shift?

Node-based Bayesian neural networks

Weight-BNNs

Node-BNNs

NodeBNN with latent variables $|\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$

$$\mathbf{Z} = \{z^{(\ell)}\}_{\ell=1}^L$$

$$f^{(\ell)}(x; \mathbf{Z}) = \sigma \left(W^{(\ell)} f_{in}^{(\ell)} + b^{(\ell)} \right)$$

$$f_{in}^{(\ell)} = f^{(\ell-1)}(x; \mathbf{Z}) \circ z^{(\ell)}$$

NodeBNN with latent variables $|\mathcal{Z}=\{z^{(\ell)}\}_{\ell=1}^L$

$$\mathbf{Z} = \{z^{(\ell)}\}_{\ell=1}^L$$

$$f^{(\ell)}(x; \mathbf{Z}) = \sigma \left(W^{(\ell)} f_{in}^{(\ell)} + b^{(\ell)} \right)$$

$$f_{in}^{(\ell)} = f^{(\ell-1)}(x; \mathbf{Z}) \circ z^{(\ell)}$$

Previous layer's output

NodeBNN with latent variables $|\mathcal{Z}=\{z^{(\ell)}\}_{\ell=1}^L$

$$\mathbf{Z} = \{z^{(\ell)}\}_{\ell=1}^L$$

$$f_{in}^{(\ell)} = f^{(\ell-1)}(x; \mathbf{Z}) \circ \mathbf{z}^{(\ell)}$$
 Latent node variables

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$
 - → Pretrained or MAP solution

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$
 - → Pretrained or MAP solution
- 2. Node variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$
 - → Infer posterior

Network	Layers	Parameters		
		weights	nodes	w/n ratio
LeNet	5	42K	23	1800x
AlexNet	8	61M	18,307	3300x
VGG16-small	16	15M	5,251	2900x
VGG16-large	16	138M	36,995	3700x
ResNet50	50	26M	24,579	1000x
WideResNet-28x10	28	36M	9,475	3800x

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$
 - → Pretrained or MAP solution
- 2. Node variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$
 - → Infer posterior

Network	Layers	Parameters		
		weights	nodes	w/n ratio
LeNet	5	42K	23	/1800x
AlexNet	8	61M	18,307	3300x
VGG16-small	16	15M	5,251	2900x
VGG16-large	16	138M	36,995	3700x
ResNet50	50	26M	24,579	1000x
WideResNet-28x10	28	36M	9,475	3800x

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$
 - → Pretrained or MAP solution
- 2. Node variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$
 - → Infer posterior
- → Node-BNNs are efficient alternatives to standard weight-BNNs

Node-BNNs outperform MAP under corruptions

WideResNet-28-10 / CIFAR-10-C

Our paper's goals

Providing insights into the robustness of node-BNNs under input corruptions.

Proposing a method to improve the robustness of node-BNNs

Why do node-BNNs generalize better under input corruptions?

Finding the implicit corruption

Approximating the implicit corruption

$$f(x; \mathbf{Z})$$

$$\hat{f}(x) = f(x; \mathbf{Z} = \mathbf{1})$$

Given $\mathcal{Z} \sim p(\mathcal{Z})$, approximate m by minimizing

$$\frac{1}{2} \left| \left| f(x; \mathbf{Z}) - \hat{f}(x+m) \right| \right|_{2}^{2} + \frac{\lambda}{2} ||m||_{2}^{2}$$

Approximating the implicit corruption

$$f(x; \mathbf{Z})$$

$$\hat{f}(x) = f(x; \mathbf{Z} = \mathbf{1})$$

Given $\mathcal{Z} \sim p(\mathcal{Z})$, approximate m by minimizing

$$\frac{1}{2} \left| \left| f(x; \mathbf{Z}) - \hat{f}(x+m) \right| \right|_{2}^{2} + \frac{\lambda}{2} ||m||_{2}^{2}$$

Approximating the implicit corruption

$$f(x; \mathbf{Z})$$

$$\hat{f}(x) = f(x; \mathbf{Z} = \mathbf{1})$$

Given $\mathcal{Z} \sim p(\mathcal{Z})$, approximate m by minimizing

$$\frac{1}{2} \left| \left| f(x; \mathbf{Z}) - \hat{f}(x+m) \right| \right|_{2}^{2} + \frac{\lambda}{2} ||m||_{2}^{2}$$
Output matching

Output matching

L2-regularization

Example of implicit corruptions

Severity

$$\lambda = 0.03$$

$$\lambda = 0.1$$

$$\lambda = 0.3$$

Entropy of latent variables and implicit corruptions

Entropy of latent variables and implicit corruptions

We show:

1. Increasing entropy of latent variables $\overline{\mathcal{Z}}$ increase the diversity of implicit corruptions

Entropy of latent variables and implicit corruptions

We show:

- 1. Increasing entropy of latent variables $\overline{\mathcal{Z}}$ increase the diversity of implicit corruptions
- 2. Training with more diverse implicit corruptions, node-based BNNs become more robust against natural corruptions.

High entropy = more robust node-BNNs?

Low entropy model

High entropy model

Same ConvNet architecture
Train on CIFAR-10
Test on CIFAR-10-C

High entropy = more robust node-BNNs?

We use each model to generate a set of corrupted test images, then evaluate each model on its own generated corruptions.

Low entropy model

High entropy model

How robust is a model against the other model's corruptions?

The high-entropy model can handle corruptions better

How to increase the latent entropy?

Complex posterior distribution
$$p(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\mathcal{D}) \propto p(\mathcal{D}|\boldsymbol{\theta},\boldsymbol{\mathcal{Z}})p(\boldsymbol{\theta})p(\boldsymbol{\mathcal{Z}})$$

Simple, parametric distribution

Simple, parametric distribution

Simple, parametric distribution

Variational posterior

$$q_{\phi,\hat{\theta}}(\mathbf{Z},\theta) = q_{\hat{\theta}}(\theta)q_{\phi}(\mathbf{Z})$$
$$= \delta(\theta - \hat{\theta})q_{\phi}(\mathbf{Z})$$

Variational posterior

$$q_{\phi,\hat{\theta}}(\mathcal{Z},\theta) = q_{\hat{\theta}}(\theta)q_{\phi}(\mathcal{Z})$$

$$= \delta(\theta - \hat{\theta})q_{\phi}(\mathcal{Z})$$

(for MAP estimation)

Dirac delta measure

Variational posterior

$$q_{\phi,\hat{\theta}}(\mathcal{Z},\theta) = q_{\hat{\theta}}(\theta)q_{\phi}(\mathcal{Z})$$

$$= \delta(\theta - \hat{\theta})q_{\phi}(\mathcal{Z})$$
 Dirac delta measure (for MAP estimation) Mixture of Gaussians

ELBO optimization of $(\hat{\theta}, \phi)$

$$\begin{bmatrix}
\mathcal{L}(\hat{\theta}, \phi) \\
 = \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathcal{D}|\hat{\theta}, \mathbf{Z})] \\
 - \text{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z})] + \log p(\hat{\theta})
\end{bmatrix}$$

Evidence lower-bound (ELBO)

ELBO optimization of $(\hat{\theta}, \phi)$

Entropic regularization

$$\mathcal{L}_{\gamma}(\hat{ heta},\phi) = \mathcal{L}(\hat{ heta},\phi) + \gamma \mathbb{H}[q_{\phi}(\mathcal{Z})]$$
 The original ELBO

Entropic regularization

$$\mathcal{L}_{\gamma}(\hat{ heta},\phi) = \mathcal{L}(\hat{ heta},\phi) + \gamma \mathbb{H}[q_{\phi}(\mathcal{Z})]$$
The original ELBO The γ entropy

The
$$\gamma$$
 – ELBO = tempered posterior

Maximizing the γ – ELBO is equivalent to minimizing:

$$\mathrm{KL}[q_{\phi,\hat{\theta}}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})||p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}})]$$

$$p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}}) \propto p(\boldsymbol{\mathcal{D}}|\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}}p(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}}$$

The
$$\gamma$$
 – ELBO = tempered posterior

Maximizing the γ – ELBO is equivalent to minimizing:

$$\mathrm{KL}[q_{\phi,\hat{\theta}}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})||p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}})]$$

$$p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}}) \propto p(\boldsymbol{\mathcal{D}}|\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}}p(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}}$$

Temperature
$$\tau=\gamma+1$$

$\gamma>0$ enlargens posterior

Experiments

Effects of γ on corruption robustness

Network: VGG16

Train: CIFAR-100 CIFAR-100-C

K: number of Gaussian components in $q_{\phi}(\mathbf{Z})$

Effects of γ on corruption robustness

Test

Mild corruption

Severe corruption

Network: VGG16

Train: CIFAR-100

Test: CIFAR-100-C

K: number of Gaussian components in $q_{\phi}(\mathcal{Z})$

 High'ish entropy provides best performance

Effects of γ on corruption robustness

Test

Mild corruption

Severe corruption

Network: VGG16

Train: CIFAR-100

Test: CIFAR-100-C

K: number of Gaussian components in

2. Optimising too much entropy worsens

More severe corruptions require higher optimal $\, \gamma \,$

Optimal γ

Robust learning under label noise

Memorizing random labels is harder than learning generalizable patterns¹

Wrongly labelled sample can't be memorized if we add enough corruptions

Robust learning under label noise

Train NLL of wrongly labelled samples (in orange) increase much faster than the train NLL of correctly labelled samples (in blue)

ResNet18 / CIFAR-10 40% of training labels are corrupted

ResNet18 / CIFAR-100

ResNet18 / CIFAR-100

ResNet18 / CIFAR-100

PreActResNet18 / TinyImageNet

PreActResNet18 / TinyImageNet

1

Latent variables simulate a set of implicit corruptions, and implicitly training under these corruptions, node-based BNNs become robust against natural corruptions.

1

Latent variables simulate a set of implicit corruptions, and implicitly training under these corruptions, node-based BNNs become robust against natural corruptions.

2

Maximizing entropy of the latent variables increases diversity of implicit corruptions, and thus node-BNN robustness.

Latent variables simulate a set of implicit corruptions, and implicitly training under these corruptions, node-based BNNs become robust against natural corruptions.

Maximizing entropy of the latent variables increases diversity of implicit corruptions, and thus node-BNN robustness.

Latent entropy controls the trade-off between in-distribution performance and performance under corruptions, with more severe corruptions require higher optimal latent entropy which decreases the in-distribution performance.

Latent variables simulate a set of implicit corruptions, and implicitly training under these corruptions, node-based BNNs become robust against natural corruptions.

Maximizing entropy of the latent variables increases diversity of implicit corruptions, and thus node-BNN robustness.

Latent entropy controls the trade-off between in-distribution performance and performance under corruptions, with more severe corruptions require higher optimal latent entropy which decreases the in-distribution performance.

As a side effect, our method also provides robustness against noisy training labels.

4