Tackling covariate shift with node-based Bayesian neural networks

Trung Trinh

Markus Heinonen Luigi Acerbi Samuel Kaski

Background

Covariate shift

Shift due to corruptions

Shifts due to corruptions

Neural networks under input corruptions

Corruption severity

Typical behavior

Desirable behavior

Bayesian neural networks (BNNs)

Bayesian neural network

Thomas Bayes

Standard neural network

BNNs perform worse than MAP models under corruptions¹

Why? Because the standard Gaussian prior does not provide good inductive biases to handle input corruptions.²

¹Izmailov et al. (2021). What are Bayesian neural network posteriors really like?

⁷

Node-based Bayesian neural networks

Node-BNNs

Weight-BNNs

E.g.: MC-Dropout (Gal et al, 2015), Rank-1 BNNs (Dusenberry et al, 2020)

Node-BNNs perform better than MAP models under corruptions

WideResNet-28-10 / CIFAR-10-C

Node-based Bayesian neural networks

An L-layer node-BNN with latent variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$:

$$\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$$
 :

Previous layer's output Latent node variables $f_{in}^{(\ell)} = f^{(\ell-1)}(x; \mathbf{Z}) \circ z^{(\ell)}$ $f^{(\ell)}(x; \mathbf{Z}) = \sigma \left(W^{(\ell)} f_{in}^{(\ell)} + b^{(\ell)} \right)$

For
$$\mathcal{Z} \sim p(\mathcal{Z})$$
:

For
$$\mathbf{Z} \sim p(\mathbf{Z})$$
:
$$f(x; \mathbf{Z}) = f^{(L)}(x; \mathbf{Z})$$

Node-based Bayesian neural networks

		Parameters		
Network	Layers	weights	nodes	w/n ratio
LeNet	5	42K	23	/1800x
AlexNet	8	61M	18,307	3300x
VGG16-small	16	15M	5,251	2900x
VGG16-large	16	138M	36,995	3700x
ResNet50	50	26M	24,579	1000x
WideResNet-28x10	28	36M/	9,475	\3800x

Two types of parameters:

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$
 - → Find a MAP estimate.
- 2. Latent node variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^L$
 - → Infer the posterior distribution.
- → Node BNNs are efficient alternatives to standard weight-based BNNs.

Our paper's goals

Providing insights into the robustness of node-based BNNs under input corruptions.

Proposing a method to further improve the robustness of node-based BNNs in this setting.

Why do node-based BNNs generalize well under input corruptions?

We hypothesize that the distribution of the latent variables p(Z) induce a distribution of implicit corruptions in the input space $p(x^{\text{corrupt}})$.

Approximating the implicit corruption

Approximating the implicit corruption

$$\begin{array}{c|c}
 & h_1 \\
\hline
0.2 & -0.9 \\
\hline
0.6 & h_2 & -0.7 \\
\hline
-0.3 & -0.4 \\
\hline
h_3 & -0.4
\end{array}$$

$$f(x; \mathbf{Z})$$

$$\hat{f}(x) = f(x; \mathbf{Z} = \mathbf{1})$$

Given $\mathcal{Z} \sim p(\mathcal{Z})$, approximating $\, \mathcal{M} \,$ minimizing the following loss function using GD:

$$\frac{1}{2} \left| \left| f(x; \mathbf{Z}) - \hat{f}(x+m) \right| \right|_{2}^{2} + \frac{\lambda}{2} ||m||_{2}^{2}$$
Output matching

Output matching

L2-regularization

Example of implicit corruptions

Severity

$$\lambda = 0.03$$

$$\lambda = 0.1$$

$$\lambda = 0.3$$

Entropy of latent variables and implicit corruptions

We hypothesize that:

- 1. Increasing the entropy of the latent variables $\overline{\mathcal{Z}}$ increase the diversity of the implicit corruptions.
- 2. By training under more diverse implicit corruptions, node-based BNNs become more robust against natural corruptions.

Is it true that "higher entropy = more robust node-based BNNs"?

Same ConvNet architecture
Train on CIFAR-10
Test on CIFAR-10-C

Is it true that "higher entropy = more robust node-based BNNs"?

YES!!!

Is a model robust against its own corruptions?

We use each model to generate a set of corrupted test images, then evaluate each model on its own generated corruptions.

Low entropy model

High entropy model

Is a model robust against its own corruptions?

YES (in this small experiment)

How robust is a model against the other model's corruptions?

How to increase the latent entropy?

Training a node-based BNN

Two types of parameters:

- 1. Weights and biases $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^L$ with a prior $p(\theta)$.
 - → Find a MAP estimate.
- 2. Latent node variables $\mathbf{Z} = \{z^{(\ell)}\}_{\ell=1}^L$ with a prior $p(\mathbf{Z})$.
 - → Infer the posterior distribution.

Variational inference

26

Variational posterior

$$q_{\phi,\hat{\theta}}(\mathcal{Z},\theta) = q_{\hat{\theta}}(\theta)q_{\phi}(\mathcal{Z})$$

$$= \delta(\theta - \hat{\theta})q_{\phi}(\mathcal{Z})$$
 Dirac delta measure (for MAP estimation) Mixture of Gaussians MAP estimation of θ

Training objective

We find $(\hat{\theta}, \phi)$ maximizing the following objective using SGD:

Entropic regularization

The
$$\gamma$$
 – ELBO = tempered posterior

Maximizing the γ – ELBO is equivalent to minimizing:

$$\begin{split} \mathrm{KL}[q_{\phi,\hat{\theta}}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})||p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}})] \\ p_{\gamma}(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta}|\boldsymbol{\mathcal{D}}) &\propto p(\boldsymbol{\mathcal{D}}|\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}}p(\boldsymbol{\mathcal{Z}},\boldsymbol{\theta})^{\frac{1}{\gamma+1}} \end{split}$$
 Temperature $\tau = \gamma + 1$

Effects of $\gamma > 0$ on the target posterior.

Ablation study

Effects of γ on corruption robustness

VGG16 / CIFAR-100. Test on CIFAR-100-C K: number of Gaussian components in $q_{\phi}(\mathcal{Z})$.

Effects of γ on corruption robustness

More severe corruptions require higher optimal γ

Robust learning under label noise

Memorizing random labels is harder than learning generalizable patterns¹

If a sample with a wrong label is corrupted with sufficiently diverse corruptions, the model fails to memorize this wrong label.

Robust learning under label noise

Train NLL of wrongly labelled samples (in orange) increase much faster than the train NLL of correctly labelled samples (in blue)

ResNet18 / CIFAR-10 40% of training labels are corrupted

Benchmark comparison

ResNet18 / CIFAR-100

Benchmark comparison

PreActResNet18 / TinyImageNet

Conclusion

We showed that the latent variables simulated a set of implicit corruptions, and by training under these corruptions, node-based BNNs become robust against natural corruptions.

By maximizing the entropy of the latent variables, we increase the diversity of the implicit corruptions and thus improve the robustness of node-based BNNs.

We demonstrated that the latent entropy controls the trade-off between in-distribution performance and performance under corruptions, with more severe corruptions require higher optimal latent entropy which decreases the in-distribution performance.

As a side effect, our method also provides robustness against noisy training labels.

For more information visit:

