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User preferences change, and recommenders will affect them
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Incentives for user manipulation
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Estimate the effects of recommenders on user’s preferences before deployment
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See the paper for more details!

Estimating and Penalizing Induced Preference Shifts in Recommender Systems

Micah Carroll' Anca Dragan' Stuart Russell! Dylan Hadfield-Menell

Abstract

The content that a recommender system (RS)
shows to users influences them. Therefore, when
choosing a recommender to deploy, one is implic-
itly also choosing to induce specific internal states

of changes in users’ internal states: simple changes in the
content displayed to users can affect their hehavior (Wil-
helm el al., 2018; Hohnhold et al., 2015), mood (Kramer
ct al., 2014), beliefs (Allcott ct al., 2020), and preferences
(Adomavicius et al., 2013; Epstein & Robertson, 2015).




