

# **Fictitious Play and Best-Response Dynamics in Identical Interest and Zero-Sum Stochastic Games**

ICML22

---

Lucas Baudin and Rida Laraki  
Université Paris-Dauphine  
july 2022

## Definition (Stochastic Game)

$$G = (S, I, (A^i)_{i \in I}, (r_s^i)_{i \in I, s \in S}, (P_s)_{s \in S})$$

- $S$  is a finite state space
- $I$  is the set of players
- $A^i$  is the action set of player  $i$
- $P_s : A \rightarrow \Delta(S)$  is the transition probability
- $r_s^i : A \rightarrow \mathbb{R}$  is the stage reward map.

# Playing Stochastic Games

How to play stochastic games?

# Playing Stochastic Games

## How to play stochastic games?

- initial state  $s_0$

# Playing Stochastic Games

## How to play stochastic games?

- initial state  $s_0$
- for all steps  $n \in \mathbb{N}$ , the system is in  $s_n$ :
  - every player  $i$  plays an action  $a_n^i$
  - every player  $i$  receives  $r_{s_n}^i(a_n)$
  - new state  $s_{n+1} \sim P_{s_n}(a_n)$

## Two Widely Studied Learning Procedures

### Fictitious Play for Repeated Games

- Brown [1] Robinson [3]
- play a best response to the empirical average of past actions of other players

## Two Widely Studied Learning Procedures

### Fictitious Play for Repeated Games

- Brown [1] Robinson [3]
- play a best response to the empirical average of past actions of other players
- stochastic games: repeated games with a state variable

### Q-Learning for One-Player Stochastic Games

- Watkins [5]
- estimates a table of state-action continuation values

## Two Widely Studied Learning Procedures

### Fictitious Play for Repeated Games

- Brown [1] Robinson [3]
- play a best response to the empirical average of past actions of other players
- stochastic games: repeated games with a state variable

### Q-Learning for One-Player Stochastic Games

- Watkins [5]
- estimates a table of state-action continuation values
- **how can we combine these procedures for multiplayer stochastic games?**

# Learning in Stochastic Games

**Our paper:** based on ideas of Q-Learning and Fictitious Play, we propose a definition of Fictitious Play for multiplayer stochastic games.

# Learning in Stochastic Games

**Our paper:** based on ideas of Q-Learning and Fictitious Play, we propose a definition of Fictitious Play for multiplayer stochastic games.

**Convergence results:** If all players follow the procedure, then empirical actions converge to:

- the set of stationary Nash equilibria for ergodic, identical-interest stochastic games.
- the set of approximate Nash equilibria for ergodic, zero-sum stochastic games

## Fictitious Play for Stochastic Games

Inspired by Leslie et al. [2]; Sayin et al. [4].

- Two sets of variables at step  $n$ :
  - $u_{s,n}$ : estimate of continuation payoffs
  - $x_{s,n}$ : empirical action of all players

## Proof via Best-Response Dynamics

1. Define an analogous system in continuous time, best-response dynamics

## Proof via Best-Response Dynamics

1. Define an analogous system in continuous time, best-response dynamics
2. Characterize the internally chain transitive sets (*i.e.* the convergence)

## Proof via Best-Response Dynamics

1. Define an analogous system in continuous time, best-response dynamics
2. Characterize the internally chain transitive sets (*i.e.* the convergence)
3. Use stochastic approximation theorems to link this with the limit sets of the discrete time system

# Conclusion

All details and proofs in the paper!

## References

---

- [1] George W Brown. Iterative solution of games by fictitious play. *Activity analysis of production and allocation*, 13(1):374–376, 1951.
- [2] David S. Leslie, Steven Perkins, and Zibo Xu. Best-response dynamics in zero-sum stochastic games. *Journal of Economic Theory*, 189:105095, September 2020. ISSN 00220531. doi: 10.1016/j.jet.2020.105095.
- [3] Julia Robinson. An Iterative Method of Solving a Game. *The Annals of Mathematics*, 54(2):296, September 1951. ISSN 0003486X. doi: 10.2307/1969530.

- [4] Muhammed O. Sayin, Francesca Parise, and Asu Ozdaglar.  
Fictitious play in zero-sum stochastic games. *arXiv:2010.04223*  
[cs, math], October 2020.
- [5] C. J. C. H. Watkins. *Learning from Delayed Rewards*. PhD  
thesis, King's College, Oxford, 1989.