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Motivation

▶ Lasso: Amongst the most well-known tools in statistics and signal processing.

▶ Employ ℓ1-regularization to impose sparsity on the solution sought by selecting
limited number of features.

▶ Interests recently in the field of classification but lack of interpretability (choice of
hyperparameter, statistical understanding)

▶ Need for a deep theoretical understanding of Lasso scheme for classification

▶ State of the art: Statistical physics-based analysis of Lasso and analysis using
CGMT in the regression context

▶ In this talk: Large dimensional of Lasso in a classification context using Random
Matrix Theory.

▶ Application to hyperparameter selection
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Context

Observations:

▶ Samples/data points from two classes x
(1)
i ∈ C1 and x

(2)
i ∈ C2.

▶ Data matrix X = [X(1),X(2)] with X(ℓ) = [x
(ℓ)
1 , . . . ,x

(ℓ)
nℓ

], x
(ℓ)
i ∈ Rp .

▶ Associated labels y
(ℓ)
i in y = [y

(1)
1 , . . . , y

(1)
n1 , y

(2)
1 , . . . , y

(2)
n2 ]

T ∈ {−1, 1}n.
Objective:

▶ Given a new test datum x, our goal is to predict its associated label y using a
linear classifier obtained through Lasso.

Prediction steps:

▶ Sep. hyperplane: solution ω⋆ of the (convex, but non-smooth!) min. problem

argminω∈Rp
1

2
∥y −XTω∥22 + λ∥ω∥1. (Lasso)

▶ Given the optimal separating hyperplane ω⋆, classification performed by sign of

g(x) = ω⋆Tx.

▶ Solve (Lasso) via the iterative soft-thresholding algorithm (ISTA).
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Iterative soft-thresholding algorithm

▶ For a sparse minimization of the differentiable function h(ω) = 1
2
∥y −XTω∥22, do

Gradient step: zj = ωj−1 − τ∇h
(
ωj−1

)
,

Sparsity step: ωj = Sτλ

(
zj

)
,

with τ the step size and Sτλ the soft threshold function defined below.

−5 0 5

−2

0

2

Sλ(x) = sign(x) · max(0, |x| − λ)

▶ Applied to Lasso-based classification ω⋆ via ISTA (initialization ω0 = 0 ∈ Rp):

ωj+1 = Sτλ

(
ωj + τX

(
y −XTωj

))
▶ Goal: Predict (asymptotically precise) classification accuracy under this framework.
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Experiments

Goal: Predict classification accuracy from only statistical properties (mean, covariance)
of the training set!
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(Left) Amazon review dataset (“review to score - positiv vs. negative”) for two score classes with
dim. p = 400 and n1 = n2 = 100. (right) MNIST dataset (“4” vs. “9”). Histogram of the values

of the classification score g(x) = ω⋆Tx generated from 400 test samples.

▶ Close fit between the theoretical decision score and the empirical even on real data.

▶ Possibility to predict in advance the classification error and best hyperparameters.
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Regularization parameter analysis
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Theory α = 0.95

Empirical α = 0.95

Theory α = 0.9

Empirical α = 0.9

Theory α = 0.2

Empirical α = 0.2

Close fit between the theoretical and empirical (averaged over 1 000 test samples) classification
accuracy (as a function of λ), for three different values of α (sparsity level). Gaussian mixture

model with class sizes n1, n2 = 500 and x
(ℓ)
i ∼ N (µℓ, Ip), for ℓ = 1, 2, with mean

µℓ = (−1)ℓb ⊙ m, where m ∼ N (0p,
1
p Ip), and where b is a Bernoulli random vector that puts

each single entry to zero with probability α/p, with the feature size p = 100.
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Application to hyperparameter selection
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Empirical classification error for different tasks; (Left) MNIST: p = 100-PCA preprocessing,
n1 = n2 = 20, 500 test samples. (Right) Amazon Review dataset: Positive vs. negative review for
different classes (Books, Kitchen, Electronics, DVD) with n1 = n2 = 20, 2 000 test samples.
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Concluding remarks

▶ Theoretical analysis of a Lasso-based classification through the analysis of an
iterative algorithm (ISTA).

▶ Interesting insights into its applicability in a classification context, but also offers a
reliable alternative to cross-validation.

▶ Theoretical perspectives on the analysis of iterative processes that induce very
strong dependencies between data (Stochastic Gradient Descent and tensor-based
classification algorithms).

▶ Efficient use of the Lasso in real applications by appropriately choosing the
regularization parameter.
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