Staged Training for Transformer
Language Models

Sheng Shen, Pete Walsh Kurt Keutzer, Jesse Dodge, Matthew Peters, Iz Beltagy

Staged Training

Goal: Train a large language model
Now (1 stage training): [Large Model] = {Train} = [Target Model]
Proposed (multi-stage training):

[Small Model] = {Train} = {Grow} = [Larger Model] = {Train} = {Grow} = [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

> K12

Staged Training - Facts

Smaller models are initially faster to
train then they plateau

Larger models are initially slower than
smaller models but eventually become

more efficient

101 4

6x10°

val_loss

4x10°

3x10°

— GPT2_base_div4

— GPT2_large_div4

— GPT2_large

GPT2_base

10'16

107

compute

1(;18

Staged Training - Intuition

Training regime:
- train small model until loss slows down
- “jump” to alarger one

- train larger one until loss slows down

Why?
- the jump saves compute

- intermediate model sizes for free

We call the “jump” a Growth Operator

101 4

6x10°

val_loss

4x10°

3x10°

trah>\

— GPT2_base_div4
GPT2_base

— GPT2_large_div4
\ —— GPT2_large
N

small
]g}\P
N train
\ large
10'16 10'17 1(;18 1(;19

compute

+ K12

Staged Training - Intuition

— GPT2_base_div4

101 g
- How to jump effectively \ GPT2 base
\ — GPT2_large_div4

train\\ —— GPT2_large

g 6X10° small
. . . .)
- How to identify the 3 points for optimal train
compute saving 4x10° large
3x10° .
10'16 10'17 1(;18 1(;19
compute

> K12

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation

> AXi12

Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties

1
10 — GPT2_base_div4

GPT2_base
—— GPT2_large_div4
N \ — GPT2_large
1) loss-preserving (function-preserving): 4 sx1° e :
loss before growing model is the same as A

after 4x10°

val_loss

3x10°

100 107 1000 1000
compute

" K12

Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):

loss before growing model is the same as
after

2) training-dynamics-preserving: rate of
loss change after growing the model is
the same as training the model from
“scratch”

val loss

101 4

— GPT2_base_div4
GPT2_base

< —— GPT2_large_div4
\ \ —— GPT2_large
¥

6x10° 2 -

‘]\!}“p
4x10°
3x10°

100 107 1000 1000
compute

s K12

Properties for Growth Operator

training-dynamics-preserving: after
growth, model trains as fast as the model
trained from scratch

An ineffective growth operator creates a
larger model but one that doesn’t train
fast

We are the first to recognize the
importance of this property

101 4

6x10°

val_loss

4x10°

3x10°

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

10'16 10'1 7
compute

1(;18 1(;19

> KI12

Growth operators - Depth

Depth growth: increase number of layers

|

Layer C

Layer B

Depth growth
2x layers

2x the model size

Layer A

%

|

Ve

Layer C’ =

Layer C

Layer B’ =1

Layer B

Layer A’ =

Layer A

Copy layers then
manipulate a few
weights to convert
it into an Identity

(Loss-preserving)

o K12

Growth operators - Width

Width growth: increase hidden size [Y Y Y }
t Width growth 4 Y h

2x each Feed Forward Every embedding =>2x

4x the model size W O
W | > _ A) Every FF becomes => 4x

4 ')

Manipulate last hidden

0 W state to get the same logits

@ - /{\ " (Loss-preserving)
" Ai2

Properties for Growth Operator

To preserve training dynamics, growth
operator should grow whole training
state (optimizer state and LR) not just
model

101 4

- growth
target

— GP12_large

6x10°

val_loss

Intuition - get the whole training state to
match that of one trained from scratch 4x10°

LR: use LR at growth target 3x10°

10'16 10'17 1(;18 1(;19
Optimizer: grow optimizer state with a compute
mostly similar growth operator to model

growth (check paper for details) 2 A2

Properties for Growth Operator - Evaluation

Two models trained from scratch

5.00

—— GPT2arge
4.751 ' GPT2jarge/4 width
—— GPT2jarge/Ax4 width
4.501 ® Pre-Growth
(V)]
0 4.25
o
|
s 4.00
3
- 3.75
©
= 3.50
3.251
3.00
0 1 2 3 4 5

Tokens le9

s AXI12

Properties for Growth Operator - Evaluation

Grow width of the small model. Grown model matches size of the larger model

5.00

. I GPTZIarge
(LOSS preservmg) 4.751 —— GPT2arge/4 width
—— GPT23ge/4x4 width
4.501 ® Pre-Growth

()]
wn 4.25
o
|
s 4.00
-

" © 3.75
S 350

= AXI12

Properties for Growth Operator - Evaluation

Overlay grown model over larger model trained from scratch

5.00

— GPT2 large

(Preserving 4131 — GPT2pge/4 width
. . . 450, —— GPT2/arge/4x4 width
tralnlng dynam|CS) " ® Pre-Growth
0 4.25
3
s 4.00
3
375
S350

5 12

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation

o K12

Optimal Training Schedule

Prior work splits the compute heuristically
between the stages. 10° -

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

Here we see there’s a precise schedule

with the optimal compute saving 6x10°

val_loss

4x10°

3x10°

100 107 1000 1000
compute

7 K12

Optimal Training Schedule

Each stage is characterized by 3 points:

pre-growth: when to grow
growth-target: LR after growth

optimality: stop training

not convergence
Read Kaplan et. al., and Hoffmann et. al.,

val loss

101 4

6x10°

4x10°

growth
target se_divd
Se

pre-growth

3x10°

GPT2_large_div4
GPT2_large

optimality

1(;18 1(;19

10'16 10'1 7
compute

s 12

Optimal Training Schedule

Each stage is characterized by 3 points:
101 -

pre-growth: when to grow

slope of learning curve, Tdepth, Twidth
6x10°

optimality: stop training

- slope of learning curve, Topt
4x10°

growth-target: LR after growth

val_loss

3x10°

growth
target se_divd
se
GPT2_large_div4

pre-growth
slope = Tc

steps@pre-growth _ 0

- ratio steps@growth-target
function of the growth OP: @depth, Qwidth

GPT2_large

optimality
slope = Topt

1(;15

10‘16 1(;1 7
compute

Check the paper for connection to Scaling Laws [Kaplan et. al.,], proof this is optimal,

and how to estimate Tg, Topt, 0g

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation

» AKi2

Evaluation - Pretraining loss

Percentage of compute saving

GPT2Larc: GPT2pase
At OPT After OPT At OPT After OPT
2xW 73 52| 202 1973
4xW 53 38| 86 550
2 Stage practicat 2XD 11.0 6.1 204 1987
4xD 73 52| 101 648
2xDxW | 54 3.8 9.5 6.830
dstage. . 2X2XW 109 7.8 ((17.9 1148
gCpractical HyoeDy 1145 | 104 |1214) 1593 = A2

Conclusion - What to remember

- Growth operator should be

1
10 — GPT2_base_div4

GPT2_base
— GPT2_large_div4
— GPT2_large

- loss-preserving

- training-dynamics-preserving

9 6x10°
- How to identify the 3 points for optimal s
compute saving 4x10°
- Saved up to 20% compute X0 . , . .
1016 1017 1018 1019
compute

paper link: https://arxiv.org/pdf/2203.06211.pdf

code link: https://github.com/allenai/staged-training

2 Ki2

https://arxiv.org/pdf/2203.06211.pdf
https://github.com/allenai/staged-training

