
Staged Training for Transformer
Language Models

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, Iz Beltagy

1

Goal: Train a large language model

Now (1 stage training): [Large Model] ⇒ {Train} ⇒ [Target Model]

Proposed (multi-stage training):

 [Small Model] ⇒ {Train} ⇒ {Grow} ⇒ [Larger Model] ⇒ {Train} ⇒ {Grow} …. ⇒ [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

Staged Training

2

 Staged Training - Facts

Smaller models are initially faster to
train then they plateau

Larger models are initially slower than
smaller models but eventually become
more efficient

3

small

large

 Staged Training - Intuition

4

train
small

train
large

jump

Training regime:

- train small model until loss slows down

- “jump” to a larger one

- train larger one until loss slows down

Why?

- the jump saves compute

- intermediate model sizes for free

We call the “jump” a Growth Operator

 Staged Training - Intuition

5

train
small

train
large

jump

- How to jump effectively

- How to identify the 3 points for optimal
compute saving

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training

6

 Properties for Growth Operator

7

jump

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):
loss before growing model is the same as
after

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):
loss before growing model is the same as
after

2) training-dynamics-preserving: rate of
loss change after growing the model is
the same as training the model from
“scratch”

Properties for Growth Operator

8

jump

training-dynamics-preserving: after
growth, model trains as fast as the model
trained from scratch

An ineffective growth operator creates a
larger model but one that doesn’t train
fast

We are the first to recognize the
importance of this property

Properties for Growth Operator

9

Depth growth: increase number of layers

Growth operators - Depth

10

Layer C

Layer B

Layer A

Layer C’ = I

Layer B

Layer A

Layer A’ = I

Layer B’ = I

Layer CDepth growth
2x layers

2x the model size
Copy layers then
manipulate a few
weights to convert
it into an Identity

(Loss-preserving)

Width growth: increase hidden size

Growth operators - Width

11

W

Width growth
2x each Feed Forward

4x the model size
Every embedding =>2x

Every FF becomes => 4x

Manipulate last hidden
state to get the same logits

(Loss-preserving)X

Y
W 0

0 W

X X

Y Y

 Properties for Growth Operator

To preserve training dynamics, growth
operator should grow whole training
state (optimizer state and LR) not just
model

Intuition - get the whole training state to
match that of one trained from scratch

LR: use LR at growth target

Optimizer: grow optimizer state with a
mostly similar growth operator to model
growth (check paper for details) 12

growth
target

Two models trained from scratch

Properties for Growth Operator - Evaluation

13

Grow width of the small model. Grown model matches size of the larger model

(Loss preserving)

Properties for Growth Operator - Evaluation

14

Overlay grown model over larger model trained from scratch

Properties for Growth Operator - Evaluation

15

(Preserving

training dynamics)

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training

16

Prior work splits the compute heuristically
between the stages.

Here we see there’s a precise schedule
with the optimal compute saving

Optimal Training Schedule

17

Each stage is characterized by 3 points:

- pre-growth: when to grow

- growth-target: LR after growth

- optimality: stop training

- not convergence

- Read Kaplan et. al., and Hoffmann et. al.,

Optimal Training Schedule

18

optimality

growth
targetpre-growth

Each stage is characterized by 3 points:

- pre-growth: when to grow

- slope of learning curve, Ⲧdepth, Ⲧwidth

- optimality: stop training

- slope of learning curve, Ⲧopt

- growth-target: LR after growth

- ratio —--------------------------- = 𝝆
- function of the growth OP: 𝝆depth, 𝝆width

Optimal Training Schedule

19

optimality
slope = Ⲧopt

growth
target

pre-growth
slope = ⲦG

steps@pre-growth
steps@growth-target

Check the paper for connection to Scaling Laws [Kaplan et. al.,], proof this is optimal,

and how to estimate Ⲧg, Ⲧopt, 𝝆g

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training

20

Percentage of compute saving

Evaluation - Pretraining loss

21

- Growth operator should be

- loss-preserving

- training-dynamics-preserving

- How to identify the 3 points for optimal
compute saving

- Saved up to 20% compute

paper link: https://arxiv.org/pdf/2203.06211.pdf

code link: https://github.com/allenai/staged-training

Conclusion - What to remember

22

jump

https://arxiv.org/pdf/2203.06211.pdf
https://github.com/allenai/staged-training

