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Staged Training

Goal: Train a large language model
Now (1 stage training): [Large Model] = {Train} = [Target Model]
Proposed (multi-stage training):

[Small Model] = {Train} = {Grow} = [Larger Model] = {Train} = {Grow} .... = [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016
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Staged Training - Facts

Smaller models are initially faster to
train then they plateau

Larger models are initially slower than
smaller models but eventually become

more efficient
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Staged Training - Intuition

Training regime:
- train small model until loss slows down
- “jump” to alarger one

- train larger one until loss slows down

Why?
- the jump saves compute

- intermediate model sizes for free

We call the “jump” a Growth Operator
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Staged Training - Intuition
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Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation
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Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties
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Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):

loss before growing model is the same as
after

2) training-dynamics-preserving: rate of
loss change after growing the model is
the same as training the model from
“scratch”

val loss

101 4

— GPT2_base_div4
GPT2_base

< —— GPT2_large_div4
\ \ —— GPT2_large
¥

6x10° 2 -

‘]\!}“p
4x10°
3x10°

100 107 1000 1000
compute

s K12



Properties for Growth Operator

training-dynamics-preserving: after
growth, model trains as fast as the model
trained from scratch

An ineffective growth operator creates a
larger model but one that doesn’t train
fast

We are the first to recognize the
importance of this property
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Growth operators - Depth

Depth growth: increase number of layers
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Growth operators - Width

Width growth: increase hidden size [ Y Y Y }
t Width growth 4 Y h
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Properties for Growth Operator

To preserve training dynamics, growth
operator should grow whole training
state (optimizer state and LR) not just
model
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Properties for Growth Operator - Evaluation

Two models trained from scratch
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Properties for Growth Operator - Evaluation

Grow width of the small model. Grown model matches size of the larger model
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Properties for Growth Operator - Evaluation

Overlay grown model over larger model trained from scratch
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Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation
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Optimal Training Schedule

Prior work splits the compute heuristically
between the stages. 10° -
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Optimal Training Schedule

Each stage is characterized by 3 points:

pre-growth: when to grow
growth-target: LR after growth

optimality: stop training

not convergence
Read Kaplan et. al., and Hoffmann et. al.,

val loss
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Optimal Training Schedule

Each stage is characterized by 3 points:
101 -

pre-growth: when to grow

slope of learning curve, Tdepth, Twidth
6x10°

optimality: stop training
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Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule

e Evaluation
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Evaluation - Pretraining loss

Percentage of compute saving

GPT2Larc:  GPT2pase
At OPT After OPT At OPT After OPT
2xW 73 52| 202 1973
4xW 53 38| 86 550
2 Stage practicat  2XD 11.0 6.1 204 1987
4xD 73 52| 101 648
2xDxW | 54 3.8 9.5 6.830
dstage. . 2X2XW 109 7.8 ((17.9 1148
gCpractical  HyoeDy 1145 | 104 |1214 ) 1593 = A2



Conclusion - What to remember

- Growth operator should be
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paper link: https://arxiv.org/pdf/2203.06211.pdf

code link: https://github.com/allenai/staged-training
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