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Goal: Train a large language model

Now  (1 stage training):                     [Large Model]  ⇒ {Train} ⇒  [Target Model]

Proposed (multi-stage training):

 [Small Model] ⇒ {Train} ⇒ {Grow} ⇒ [Larger Model] ⇒ {Train} ⇒ {Grow}  …. ⇒ [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions 
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

Staged Training

2



  Staged Training - Facts

Smaller models are initially faster to 
train then they plateau

Larger models are initially slower than 
smaller models but eventually become 
more efficient
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  Staged Training - Intuition
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small
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large

jump

Training regime:

- train small model until loss slows down

- “jump” to a larger one 

- train larger one until loss slows down

Why?

- the jump saves compute 

- intermediate model sizes for free

We call the “jump” a Growth Operator



  Staged Training - Intuition
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small
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large

jump

- How to jump effectively 

- How to identify the 3 points for optimal 
compute saving



  

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training
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  Properties for Growth Operator
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jump

To effectively jump between learning 
curves, growth operator should have the 
following properties

1)  loss-preserving (function-preserving): 
loss before growing model is the same as 
after



  

To effectively jump between learning 
curves, growth operator should have the 
following properties

1)  loss-preserving (function-preserving): 
loss before growing model is the same as 
after

2) training-dynamics-preserving: rate of 
loss change after growing the model is 
the same as training the model from 
“scratch”

Properties for Growth Operator
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training-dynamics-preserving: after 
growth, model trains as fast as the model 
trained from scratch

An ineffective growth operator creates a 
larger model but one that doesn’t train 
fast

We are the first to recognize the 
importance of this property

Properties for Growth Operator
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Depth growth: increase number of layers

Growth operators - Depth
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Layer C

Layer B

Layer A

Layer C’ = I

Layer B

Layer A

Layer A’ = I

Layer B’ = I

Layer CDepth growth
2x layers 

2x the model size
Copy layers then 
manipulate a few 
weights to convert 
it into an Identity

(Loss-preserving)



  

Width growth: increase hidden size

Growth operators - Width
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W

Width growth
2x each Feed Forward

4x the model size
Every embedding =>2x 

Every FF becomes => 4x

Manipulate last hidden 
state to get the same logits

(Loss-preserving)X
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  Properties for Growth Operator

To preserve training dynamics, growth 
operator should grow whole training 
state (optimizer state and LR) not just 
model

Intuition - get the whole training state to 
match that of one trained from scratch

LR: use LR at growth target

Optimizer: grow optimizer state with a 
mostly similar growth operator to model 
growth (check paper for details) 12

growth 
target



  

Two models trained from scratch

Properties for Growth Operator - Evaluation
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Grow width of the small model. Grown model matches size of the larger model

(Loss preserving)

Properties for Growth Operator - Evaluation
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Overlay grown model over larger model trained from scratch

Properties for Growth Operator - Evaluation
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(Preserving 

training dynamics)



  

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training
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Prior work splits the compute heuristically 
between the stages. 

Here we see there’s a precise schedule 
with the optimal compute saving

Optimal Training Schedule
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Each stage is characterized by 3 points: 

- pre-growth: when to grow

- growth-target: LR after growth

- optimality: stop training

- not convergence

- Read Kaplan et. al., and Hoffmann et. al.,

Optimal Training Schedule
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Each stage is characterized by 3 points: 

- pre-growth: when to grow

- slope of learning curve, Ⲧdepth, Ⲧwidth

- optimality: stop training

- slope of learning curve, Ⲧopt

- growth-target: LR after growth

- ratio —--------------------------- =  𝝆
- function of the growth OP: 𝝆depth, 𝝆width

Optimal Training Schedule

19

optimality
slope = Ⲧopt

growth 
target

pre-growth
slope = ⲦG

steps@pre-growth
steps@growth-target

Check the paper for connection to Scaling Laws [Kaplan et. al.,], proof this is optimal, 

and how to estimate Ⲧg, Ⲧopt, 𝝆g



  

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Evaluation

Staged Training
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Percentage of compute saving 

Evaluation - Pretraining loss
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- Growth operator should be

- loss-preserving

- training-dynamics-preserving

- How to identify the 3 points for optimal 
compute saving

- Saved up to 20% compute

paper link: https://arxiv.org/pdf/2203.06211.pdf  

code link: https://github.com/allenai/staged-training 

Conclusion - What to remember
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https://arxiv.org/pdf/2203.06211.pdf
https://github.com/allenai/staged-training

