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• Underspecification: Many “spurious maps” which yield wrong predictions 
despite zero held-out loss.



When are domain maps 
identifiable?

Theory + Algorithms
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Idea: spurious maps correspond to symmetries in the distribution.


We can prove asymmetry using properties associated with the second 
moment matrix:


#1: Distinct eigenvalues  rotational asymmetry


#2: Skewed marginals along eigenvectors  reflection asymmetry

⇒

⇒

Orthogonal Linear Maps
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Whitening reduces general linear maps to orthogonal maps…


… but second moment conditions no longer hold.


We derive analogous conditions on the third moment tensor 
of the whitened distribution: 

Unique CP decomposition

with no repeated weights 
(analogous to eigenvalues)

⇒ General linear asymmetry
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Intuition: 

1. An “unbiased” mapping algorithm chooses randomly from possible maps


2. Random orthogonal transformations can make any mapping algorithm 
“unbiased”
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Test: 
 for all ?Ti = R−1

i i



Beyond The Linear Case

Idea: Bound the worst-case error over the set of possible maps. 

         ℒT(h) ≤ ℒS(hs) + sup
T∈𝒯̃

𝔼Pt [ℓ(h(x), hs(T(x)))]



Beyond The Linear Case

Idea: Bound the worst-case error over the set of possible maps. 

          

Heuristic: Approximate  (the set of possible maps) by a few random restarts 
of a mapping algorithm.


This leads to a loss function for domain mapping.

ℒT(h) ≤ ℒS(hs) + sup
T∈𝒯̃

𝔼Pt [ℓ(h(x), hs(T(x)))]
𝒯̃
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Beyond The Linear Case

Learning uncertainty-aware 
target-domain classifiers:

Predicting target-domain accuracy 
without target-domain labels:

Baseline Our Method



Thank you!


