

Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems

Manuel Brenner *1 2 Florian Hess * 1 2 Jonas M. Mikhaeil 1 2 Leonard Bereska 3 Zahra Monfared 1 Po-Chen Kuo 4 Daniel Durstewitz 1 2

> *contributed equally 1 Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany 2 Faculty of Physics and Astronomy, Heidelberg University, Germany 3 University of Amsterdam, Netherlands National Taiwan University, Taiwan.

Dynamical Systems Reconstructions

Dynamical Systems Reconstructions

Challenges of Dynamical Systems Reconstructions

Mathematical tractability Models often too complex for efficient DS analysis Latent space size Often high dimensional spaces required for successful reconstructions

Model assumptions

Models may require structural knowledge or are not dynamically universal

Piecewise Linear Recurrent Neural Network

Transformation into equivalent continuous time ODE systems (Monfared & Durstewitz, ICML 2020)

Dendritic PLRNN

Dendritic computation as linear spline basis expansion

$$\phi(\boldsymbol{z}_{t-1}) = \max(0, \boldsymbol{z}_{t-1}) \longrightarrow \phi(\boldsymbol{z}_{t-1}) = \sum_{b=1}^{B} \alpha_b \max(0, \boldsymbol{z}_{t-1} - \boldsymbol{h}_b),$$

Dendritic PLRNN

Dendritic computation as linear spline basis expansion

$$\phi(\boldsymbol{z}_{t-1}) = \max(0, \boldsymbol{z}_{t-1}) \longrightarrow \phi(\boldsymbol{z}_{t-1}) = \sum_{b=1}^{B} \alpha_b \max(0, \boldsymbol{z}_{t-1} - \boldsymbol{h}_b)$$

Successful reconstructions in much lower dimensions

Theoretical Results

Dimensionality reduction & preserved tractability

Theorem 1. Any *M*-dimensional dendPLRNN as defined in Eqs. 1, 4, can always be rewritten as a $M \times B$ -dimensional "conventional" PLRNN of the form

$$\hat{\boldsymbol{z}}_t = \tilde{\boldsymbol{A}}\hat{\boldsymbol{z}}_{t-1} + \tilde{\boldsymbol{W}} \max(0, \hat{\boldsymbol{z}}_{t-1}) + \hat{\boldsymbol{h}}_0 + \tilde{\boldsymbol{Cs}}_t + \tilde{\boldsymbol{\epsilon}}_t.$$

Bounded orbits

Theorem 2. For each basis $\{\alpha_b, h_b\}$ in Eq. 4 of a dend-PLRNN let us add another basis $\{\alpha_b^*, h_b^*\}$ with $\alpha_b^* = -\alpha_b$ and $h_b^* = 0$. Then, for $\sigma_{\max}(A) < 1$, any orbit of this "clipped" dendPLRNN (Eq. 10) will remain bounded.

Training Methods

Sequential Variational Autoencoder

Backpropagation through time with sparse teacher forcing (TF)

Simulated Benchmark Systems

Simulated Benchmark Systems

steps

time

Empirical Data

Experimental EEG Data

Experimental ECG Data

Comparisons

Highly competitive performance

Dataset	Method	PSC	$D_{\rm stsp}$	20-step PE	Dyn.var.	#parameters
Lorenz- 63	dendPLRNN TF	0.997 ± 0.002	0.13 ± 0.18	$9.2e-5 \pm 2.8e-5$	22	1032
	RC	$0.991~\pm~0.001$	$0.24~\pm~0.05$	$1.2e-2 \pm 0.1e-3$	345	1053
	LSTM-MSM	0.985 ± 0.004	0.85 ± 0.07	$1.2e{-2} \pm 0.1e{-3}$	29	1035
	SINDy	0.998 ± 0.0003	0.04 ± 0.01	$6.8\mathrm{e}{-5}\pm0.2\mathrm{e}{-5}$	3	252
	Neural ODE	0.992 ± 0.001	0.149 ± 0.014	$1.1\mathrm{e}{-3} \pm 4.1\mathrm{e}{-5}$	3	1011
Bursting Neuron	dendPLRNN TF	0.76 ± 0.04	0.61 ± 0.09	$6.1e-2 \pm 2.2e-2$	26	2040
	RC	$0.51~\pm~0.01$	5.1 ± 0.6	$8.6e-2 \pm 0.1e-2$	711	2133
	LSTM-MSM	$0.54~\pm~0.02$	2.83 ± 0.36	$3.9\mathrm{e}{-2}\pm0.1\mathrm{e}{-2}$	45	2166
	SINDy	$0.25~\pm~0.01$	6.36 ± 0.02	$5.4e{-1} \pm 0.1e{-2}$	3	252
	Neural ODE	0.65 ± 0.017	3.85 ± 0.1	$2.1{\rm e}{-1}\pm0.5{\rm e}{-2}$	3	2073
Lorenz- 96	dendPLRNN TF	0.998 ± 0.0001	0.04 ± 0.01	$4.1e-2 \pm 0.8e-2$	50	4480
	RC	0.986 ± 0.008	0.25 ± 0.17	$7.1e{-1} \pm 0.1e{-2}$	440	4400
	LSTM-MSM	0.993 ± 0.002	0.23 ± 0.03	$8.2e{-1} \pm 0.3e{-2}$	62	4384
	SINDy	$0.997~\pm~0.001$	0.06 ± 0.003	$6.3e-2 \pm 0.1e-3$	10	27410
	Neural ODE	0.985 ± 0.001	0.21 ± 0.02	$4.4e-2 \pm 4.5e-3$	10	4130
Neural Popula- tion Model	dendPLRNN TF	0.52 ± 0.01	0.37 ± 0.05	1.43 ± 0.01	75	9990
	RC	0.34 ± 0.03	2.8 ± 0.4	1.64 ± 0.07	200	10000
	LSTM-MSM	$0.51~\pm~0.02$	0.29 ± 0.04	$1.56~\pm~0.01$	56	10298
	SINDy	diverging	diverging	diverging	50	66300
	Neural ODE	0.47 ± 0.03	9.56 ± 0.86	0.58 ± 0.006	50	10200
EEG	dendPLRNN TF	0.923 ± 0.012	1.96 ± 0.18	0.202 ± 0.007	128	27058
	RC	0.782 ± 0.002	8.8 ± 0.8	0.78 ± 0.02	448	28672
	LSTM-MSM	0.827 ± 0.002	8.3 ± 0.3	0.708 ± 0.003	168	27728
	SINDy	diverging	diverging	diverging	64	133120
	Neural ODE	0.82 ± 0.002	21.72 ± 0.71	0.31 ± 0.005	64	30559
ECG	dendPLRNN TF	0.929 ± 0.014	0.4 ± 0.6	0.23 ± 0.03	30	2641
	RC	0.880 ± 0.013	1.78 ± 0.44	0.571 ± 0.013	378	2646
	LSTM-MSM	$0.926~\pm~0.007$	0.59 ± 0.08	$7.0e-2 \pm 0.6e-2$	51	2801
	SINDy	diverging	diverging	diverging	7	4424
	Neural ODE	$0.90~\pm~0.011$	1.18 ± 0.02	0.61 ± 0.01	7	2599

Conclusions

Code: https://github.com/DurstewitzLab/dendPLRNN

Deutsche Forschungsgemeinschaft

This work was funded by the German Research Foundation (DFG) within Germany's Excellence Strategy – EXC-2181 – 390900948 ('Structures'), by DFG grant Du354/10-1 to DD, and the European Union Horizon-2020 consortium SC1-DTH-13-2020 ('IMMERSE').