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Policy Learning for Control/Robotics
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Policy Learning for Control/Robotics

[ Type 1 : Compact State Spaces ] [ Type 2 : Tabula-Rasa End-to-End Policies ]

Directly from simulators Environment

(Mostly) learn entire visuo-motor policy from scratch, or

(Sometimes) highly domain specific pretraining



Pre-Training & Self-Supervision in Vision/NLP

Task-Agnostic Pre-Training

Large & Diverse

Large & Flexible

Data Bank Neural Model
OpenAl GPT
Er B ()
e . &
Crom ) Tom ) ( Tm
E | E, 31 Bl
GPT-X / BERT / RoBERTa

1+ trillion words

Pre-Training
Objective

Generic Objective
(Contrastive, masking..)

loss:
@ e @
Softma

centering

€ema

student ggs — teacher gg;

MoCo / SimCLR / DINO / MAE
(ImageNet without labels)

Task-Specific Adaptation

i

Pre-Trained

Classification

Translation

and more ...

“Foundation” Model Downstream Tasks

Text

EJ L4 -
g T, | T [ Ts w | Ty

I LTy (LT, [Ty | L [Ty
I, LT [T | LTy | . [LTy
Image
I I3T; | I3T, | I3-T: 13T
@—> Encoder 3 3Ty | 13Ty | I37T3 3TN
Iy | |InT [Ty [ INTs | . [Ty

OpenAl CLIP, 400 million
Image-Caption pairs



Pre-Training & Self-Supervision in Vision/NLP
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Can a single vision model, pre-trained entirely on

out-of-domain passive datasets, work for diverse control tasks?




Pre-Training & Self-Supervision in Vision/NLP
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Evaluation Domains

Habitat ImageNav (Replica Dataset; 5 scenes) Adroit Dexterous Manipulation (2 hardest tasks)




Q: How well do pre-trained vision models work off-the-shelf?

» Frozen PVRs (off-the-shelf) > frozen random features / end-to-end learning

» Self-supervised representations > supervised representations
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Q: How well do pre-trained vision models work off-the-shelf?

» Frozen PVRs (off-the-shelf) > frozen random features / end-to-end learning
» Self-supervised representations > supervised representations
> Habitat: MoCo features competitive with states out-of-the-box!

> X Remaining domains: Still sizable gap between states and PVRs
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m Ground-Truth

= MoCo (Aug+)
= RN34

= RN50

= CLIP (RN50)
= CLIP (VIT)

= Random

= From Scratch

91 89

82 183 184 g\

75 73 175 |72

65




Q: Does augmentations make a difference in SSL?

Increase similarity between embeddings of all these images

Habitat
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® Ground-Truth m MoCo (Aug+) ® MoCo (Crop) = MoCo (Color)

» Crop augmentations are most important
(consistent with prior works, e.g. CURL, DrQ)

» Removing color aug helps in most cases

Semantic Recognition and Control require

different visual invariances

Image Credit: Chen et al. 2020 (SimCLR)



Different Layers Encode Different Invariances

Low-Level > Mid-Level > High-Level
Features Features Features




ImageNet

Places

> Later layer features are better for high-level semantic tasks (Habitat ImageNav)
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ImageNet

Places

> Later layer features are better for high-level semantic tasks (Habitat ImageNav)

> Early layer features are better for fine-grained control tasks (manipulation in MuloCo)
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ImageNet

Places

» Later layer features are better for high-level semantic tasks (Habitat ImageNav)
» Early layer features are better for fine-grained control tasks (manipulation in MuJoCo)
> Early layer features are competitive with ground truth states in MuloCo tasks

» Trends consistently true across multiple models, environments, and datasets
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» Combine features from multiple layers = single vision model that works across the board?
> MoCo with Layer 5: X MuloCo © Habitat
> MoCo with Layer 3 : MuloCo X Habitat
> MoCo layers 3-4-5 : MuloCo ™ Habitat
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Summary

Can a single vision model, pre-trained entirely on

out-of-domain passive datasets, work for diverse control tasks?
YES !!!
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Take Home Message

Move away from tabula-rasa training

|

Train control policies using
pre-trained perception modules

|

Save time, data, expertise

https://sites.google.com/view/pvr-control




