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Motivation

Dynamic mechanism design studies

§ Allocation of goods in changing environments.

§ Often formulate environments as MDPs.

§ Caveat: often assumes environments are known a priori.

Can we recover a “good” dynamic mechanism with only access to
a precollected dataset with offline RL, with no knowledge of the

underlying MDP?



Preliminaries in MDP

An episodic MDP given by M “

´

S,A,H,P, tri ,hun,Hi“0,h“1

¯

.

§ n agents, 1 seller.

§ S state space, A action space, P transition kernel.

§ @i P rns, ri ,h : S ˆAÑ r0, 1s agent i ’s reward function at step
h. Seller’s reward function is r0,h : S ˆAÑ r´Rmax,Rmaxs.

§ πh : S Ñ ∆pAq seller’s policy at step h. V π
h p¨; rq and Qπ

h p¨; rq
state- and action-value functions defined w.r.t. reward
function r .



Dynamic Mechanism as an MDP

Interaction between buyer and seller.

§ h “ 1: WLOG environment starts at some s0 P S.

§ h “ 1, . . . ,H:

§ Seller observes state sh and takes action ah, receiving reward
r0,hpsh, ahq.

§ Agents receive rewards ri,hpsh, ahq and report with a
potentially untruthful reward function rri,hpsh, ahq.

§ Nature draws the next state s 1 „ Php¨|sh, ahq.

§ h “ H: Seller charges each agent i some price pi P R`.



The Markov VCG Mechanism

§ Seller acts according to rπ˚ “ argmaxπ V
π
1 ps0;

řn
i“0 rri q.

§ For i P rns, seller sets price pi as follows

pi “ max
π

V π
1 ps0; rR´i q ´ V rπ˚

1 ps0; rR´i q,

where rR´i “
ř

j‰i rri .

§ Intuition: pi represents the “cost” of agent i joining the
mechanism.



Mechanism Design Desiderata

Below we state, informally, three key mechanism design desiderata.

§ Efficiency: the seller’s policy maximizes the social welfare, i.e.
the sum of rewards of all agents, when all agents report
truthfully.

§ Individual Rationality: the prices charged to the agents cannot
exceed their rewards.

§ Truthfulness: agents cannot increase their rewards by
reporting untruthfully.

The Markov VCG mechanism satisfies all three simultaneously.
Can we show that we can learn a mechanism that satisfies all three
approximately?



Estimating the Mechanism via Offline RL

Let D “ tpxτh , aτh , trr τi ,huni“1, xτh`1qu
H,K
h,τ“1 be the dataset. We assume

the entries are drawn i.i.d. from some distribution µ induced by
some behavioral policy.

The intuition behind any algorithm that “learns” the Markov VCG
mechanism can be summarized as follows.

§ Step 1: use D to find some policy qπ such that
V ˚1 ps0; rRq ´ V qπ

1 ps0; rRq is small.

§ Step 2: for all i estimate the VCG price pi as

ppi “ G
p1q
´i ps0q ´ G

p2q
´i ps0q,

where G
p1q
´i ps0q estimates maxπ V

π
1 ps0; rR´i q and G

p2q
´i ps0q

estimates V qπ
1 ps0; rR´i q.



Challenge: Estimating the VCG Price

Recall the VCG price estimate is given by

ppi “ G
p1q
´i ps0q ´ G

p2q
´i ps0q.

We highlight 3 challenges not found in prior works in offline RL.

1. Showing ppi satisfies the mechanism design desiderata
approximately.

2. Estimating G
p1q
´i ps0q, which requires learning a fictitious policy

that approximately maximizes V π
1 ps0; rR´i q.

3. A combination of optimism and pessimism is needed for price
estimation.



Policy Evaluation and Soft Policy Iteration

Bh,r pf , π;Dq: empirical estimate for Bellman error under policy π
at step h with respect to reward function r .

Policy evaluation procedure: solve the following problem

argminf PF ˘f1ps0, πq ` λ
řH

h“1 Bh,r pf , π;Dq,

where the first sign is ´ if optimistic and ` if pessimistic.

Soft policy iteration: perform mirror descent-style updates

pπ
pt`1q
h,r pa|sq9 pπ

ptq
h,r pa|sq exp

´

η pQ
ptq
h,r ps, aq

¯

,

where pπ
ptq
h,r ,

pQ
ptq
h,r can be optimistic or pessimistic, depending on the

choice of policy evaluation procedure.



Summary of Results

When the dataset has sufficient coverage, the value functions are
realizable by the function class F , and the function class F is
complete, with high probability

1. The social welfare suboptimality decays at a rate of OpK´2{3q.
2. Seller’s and agents’ utility suboptimalities decay at a rate of

OpK´2{3q.
3. Agents’ utilities are lower bounded by ´OpK´2{3q, i.e. the

prices charged does not exceed their reward significantly.

4. Agents can gain at most OpK´2{3q from reporting
untruthfully.

Particularly items 1 and 2 also requires truthful reporting from all
agents.


