Efficient Learning of CNNs using Patch Based Features A theoretical perspective on patch-based models Alon Brutzkus ¹ Amir Globerson ¹ Eran Malach ² Alon Regev Netser ² Shai Shalev-Shwartz ² ^{1}Tel Aviv University, Israel ^{2}The Hebrew University of Jerusalem, Israel June 27, 2022 Recently, learning with patch-based representations has become increasingly popular for solving visual tasks. Recently, learning with patch-based representations has become increasingly popular for solving visual tasks. Recently, learning with patch-based representations has become increasingly popular for solving visual tasks. Recently, learning with patch-based representations has become increasingly popular for solving visual tasks. Our goal is to gain a deeper understanding of these models, by studying a simple patch-based model from a theoretical perspective. ¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021). #### **Unsupervised Stage:** Obtain a patches dictionary D by clustering patches from the data. ¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021). ### **Unsupervised Stage:** Obtain a *patches dictionary D* by clustering patches from the data. ## Patch-Based Image Embedding: Define a patch-embedding $\phi_D(\cdot)$ mapping patches to \mathbb{R}^t , which induces an image-embedding $\Phi_D(\cdot)$. ¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021). ### **Unsupervised Stage:** Obtain a patches dictionary D by clustering patches from the data. ## Patch-Based Image Embedding: Define a patch-embedding $\phi_D(\cdot)$ mapping patches to \mathbb{R}^t , which induces an image-embedding $\Phi_D(\cdot)$. ### Supervised Stage: Train a linear model on top of the fixed embedding on labeled data. ¹Originally proposed by Coates et al. (2011) and improved by Thiry et al (2021). → < ○ ## Provable Efficient Learning Under Some Assumptions We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension). ## Provable Efficient Learning Under Some Assumptions We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension). ### Theorem (Informal) Fix $\epsilon, \delta \in (0,1)$. Let \mathcal{I} be a distribution realizable by a shallow CNN. Let N_0 be the covering-number of the patches-distribution. Then, running the algorithm with a dictionary of size N_0 and poly $(1/\epsilon, 1/\delta, N_0)$ samples returns w.p. at least $1-\delta$ a hypothesis h s.t. $\Pr_{(\mathbf{x},\mathbf{y})\sim\mathcal{I}}[h(\mathbf{x})\neq y]\leq \epsilon$. ## Provable Efficient Learning Under Some Assumptions We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension). ### Theorem (Informal) Fix $\epsilon, \delta \in (0,1)$. Let \mathcal{I} be a distribution realizable by a shallow CNN. Let N_0 be the covering-number of the patches-distribution. Then, running the algorithm with a dictionary of size N_0 and poly $(1/\epsilon,1/\delta,N_0)$ samples returns w.p. at least $1-\delta$ a hypothesis h s.t. $\Pr_{(\mathbf{x},y)\sim\mathcal{I}}[h(\mathbf{x})\neq y]\leq \epsilon$. • We also suggest a new embedding and prove it provides efficient learning under some assumption on the target function. $$\phi_{\mathrm{full}}(\mathbf{z};\!D) = \mathbf{z}$$ k-neighbors indices ## Performance Analysis • The algorithm equipped with our embedding Φ_{full} outperforms the previously proposed embedding Φ_{hard} , and even a vanilla CNN. | | Test Accuracy | |--|--------------------------| | Vanilla 1 hidden-layer CNN | $80.08\%~(\pm 0.16\%)$ | | $\Phi_{ m hard}$ with random patches | $71.36\% \ (\pm 0.24\%)$ | | Φ_{full} with random patches | $76.04\%~(\pm 0.13\%)$ | | $\Phi_{ m hard}$ with data patches | $78.80\% \ (\pm 0.32\%)$ | | Φ_{full} with data patches | 81.23% (±0.15%) | ## Performance Analysis • The algorithm equipped with our embedding Φ_{full} outperforms the previously proposed embedding Φ_{hard} , and even a vanilla CNN. | | Test Accuracy | |--|--------------------------| | Vanilla 1 hidden-layer CNN | $80.08\%~(\pm 0.16\%)$ | | $\Phi_{ m hard}$ with random patches | $71.36\% \ (\pm 0.24\%)$ | | $\Phi_{ m full}$ with random patches | $76.04\%~(\pm 0.13\%)$ | | $\Phi_{ m hard}$ with data patches | $78.80\%~(\pm 0.32\%)$ | | Φ_{full} with data patches | 81.23% (±0.15%) | • Running the algorithm with Φ_{full} in a layer-by-layer fashion results in a deep model which gives further improvements, while the original algorithm (with Φ_{hard}) does not scale with depth. ## Verifying Distributional Assumption • We verify that the distributional assumptions hold on real world data by experimenting on CIFAR-10 and ImageNet datasets. ## Verifying Distributional Assumption - We verify that the distributional assumptions hold on real world data by experimenting on CIFAR-10 and ImageNet datasets. - We observed that patches sampled from the data are clustered together. ## Thank you! - We provide new understanding of patch-based representations. - If you find our work interesting please visit our poster.² June 27, 2022 ²You can also email us at alon.netser@mail.huji.ac.il or eran.malach@mail.huji.ac.il