Efficient Learning of CNNs using Patch Based Features A theoretical perspective on patch-based models

Alon Brutzkus ¹ Amir Globerson ¹ Eran Malach ² Alon Regev Netser ² Shai Shalev-Shwartz ²

 ^{1}Tel Aviv University, Israel ^{2}The Hebrew University of Jerusalem, Israel

June 27, 2022

 Recently, learning with patch-based representations has become increasingly popular for solving visual tasks.

 Recently, learning with patch-based representations has become increasingly popular for solving visual tasks.

 Recently, learning with patch-based representations has become increasingly popular for solving visual tasks.

 Recently, learning with patch-based representations has become increasingly popular for solving visual tasks.

 Our goal is to gain a deeper understanding of these models, by studying a simple patch-based model from a theoretical perspective.

¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021).

Unsupervised Stage:

Obtain a patches dictionary D by clustering patches from the data.

¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021).

Unsupervised Stage:

Obtain a *patches dictionary D* by clustering patches from the data.

Patch-Based Image Embedding:

Define a patch-embedding $\phi_D(\cdot)$ mapping patches to \mathbb{R}^t , which induces an image-embedding $\Phi_D(\cdot)$.

¹Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021).

Unsupervised Stage:

Obtain a patches dictionary D by clustering patches from the data.

Patch-Based Image Embedding:

Define a patch-embedding $\phi_D(\cdot)$ mapping patches to \mathbb{R}^t , which induces an image-embedding $\Phi_D(\cdot)$.

Supervised Stage:

Train a linear model on top of the fixed embedding on labeled data.

¹Originally proposed by Coates et al. (2011) and improved by Thiry et al (2021). → < ○

Provable Efficient Learning Under Some Assumptions

 We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension).

Provable Efficient Learning Under Some Assumptions

 We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension).

Theorem (Informal)

Fix $\epsilon, \delta \in (0,1)$. Let \mathcal{I} be a distribution realizable by a shallow CNN. Let N_0 be the covering-number of the patches-distribution. Then, running the algorithm with a dictionary of size N_0 and poly $(1/\epsilon, 1/\delta, N_0)$ samples returns w.p. at least $1-\delta$ a hypothesis h s.t. $\Pr_{(\mathbf{x},\mathbf{y})\sim\mathcal{I}}[h(\mathbf{x})\neq y]\leq \epsilon$.

Provable Efficient Learning Under Some Assumptions

 We prove the algorithm learn efficiently assuming the patches distribution has a low covering-number (e.g., low intrinsic dimension).

Theorem (Informal)

Fix $\epsilon, \delta \in (0,1)$. Let \mathcal{I} be a distribution realizable by a shallow CNN. Let N_0 be the covering-number of the patches-distribution. Then, running the algorithm with a dictionary of size N_0 and poly $(1/\epsilon,1/\delta,N_0)$ samples returns w.p. at least $1-\delta$ a hypothesis h s.t. $\Pr_{(\mathbf{x},y)\sim\mathcal{I}}[h(\mathbf{x})\neq y]\leq \epsilon$.

• We also suggest a new embedding and prove it provides efficient learning under some assumption on the target function.

$$\phi_{\mathrm{full}}(\mathbf{z};\!D) = \mathbf{z}$$
k-neighbors indices

Performance Analysis

• The algorithm equipped with our embedding Φ_{full} outperforms the previously proposed embedding Φ_{hard} , and even a vanilla CNN.

	Test Accuracy
Vanilla 1 hidden-layer CNN	$80.08\%~(\pm 0.16\%)$
$\Phi_{ m hard}$ with random patches	$71.36\% \ (\pm 0.24\%)$
Φ_{full} with random patches	$76.04\%~(\pm 0.13\%)$
$\Phi_{ m hard}$ with data patches	$78.80\% \ (\pm 0.32\%)$
Φ_{full} with data patches	81.23% (±0.15%)

Performance Analysis

• The algorithm equipped with our embedding Φ_{full} outperforms the previously proposed embedding Φ_{hard} , and even a vanilla CNN.

	Test Accuracy
Vanilla 1 hidden-layer CNN	$80.08\%~(\pm 0.16\%)$
$\Phi_{ m hard}$ with random patches	$71.36\% \ (\pm 0.24\%)$
$\Phi_{ m full}$ with random patches	$76.04\%~(\pm 0.13\%)$
$\Phi_{ m hard}$ with data patches	$78.80\%~(\pm 0.32\%)$
Φ_{full} with data patches	81.23% (±0.15%)

• Running the algorithm with Φ_{full} in a layer-by-layer fashion results in a deep model which gives further improvements, while the original algorithm (with Φ_{hard}) does not scale with depth.

Verifying Distributional Assumption

• We verify that the distributional assumptions hold on real world data by experimenting on CIFAR-10 and ImageNet datasets.

Verifying Distributional Assumption

- We verify that the distributional assumptions hold on real world data by experimenting on CIFAR-10 and ImageNet datasets.
- We observed that patches sampled from the data are clustered together.

Thank you!

- We provide new understanding of patch-based representations.
- If you find our work interesting please visit our poster.²

June 27, 2022

²You can also email us at alon.netser@mail.huji.ac.il or eran.malach@mail.huji.ac.il