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Motivation: Understanding patch-based models

Recently, learning with patch-based representations has become
increasingly popular for solving visual tasks.

ViT MLPMixer

Our goal is to gain a deeper understanding of these models, by
studying a simple patch-based model from a theoretical perspective.
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The Model1

Unsupervised Stage:
Obtain a patches dictionary D by
clustering patches from the data.
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Clustered Patches

Patch-Based
Image Embedding:
Define a patch-embedding ϕD(·)
mapping patches to Rt , which in-
duces an image-embedding ΦD(·).
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Supervised Stage:
Train a linear model on top of the
fixed embedding on labeled data.

dog ship horse

{ }..., , ,
Labeled Training Dataset

dog ship horse

{ }..., , ,
Embedded Labeled Training Dataset

Linear Model

1Originally proposed by Coates et al. (2011) and improved by Thiry et al. (2021).
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Provable Efficient Learning Under Some Assumptions

We prove the algorithm learn efficiently
assuming the patches distribution has a
low covering-number (e.g., low intrinsic
dimension).

Patches Distribution

Theorem (Informal)

Fix ϵ, δ ∈ (0, 1). Let I be a distribution realizable by a shallow CNN. Let
N0 be the covering-number of the patches-distribution. Then, running the
algorithm with a dictionary of size N0 and poly(1/ϵ, 1/δ,N0) samples
returns w.p. at least 1− δ a hypothesis h s.t. Pr(x,y)∼I [h(x) ̸= y ] ≤ ϵ.

We also suggest a new embedding and prove it provides efficient
learning under some assumption on the target function.

k-neighbors indices
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Performance Analysis

The algorithm equipped with our embedding Φfull outperforms the
previously proposed embedding Φhard, and even a vanilla CNN.

Running the algorithm with Φfull in a layer-by-layer fashion results in
a deep model which gives further improvements, while the original
algorithm (with Φhard) does not scale with depth.
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Verifying Distributional Assumption

We verify that the distributional assumptions hold on real world data
by experimenting on CIFAR-10 and ImageNet datasets.

We observed that patches sampled from the data are clustered
together.
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Thank you!

We provide new understanding of patch-based representations.

If you find our work interesting please visit our poster.2

2You can also email us at alon.netser@mail.huji.ac.il or eran.malach@mail.huji.ac.il
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