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Motivation: Understanding patch-based models

@ Recently, learning with patch-based representations has become
increasingly popular for solving visual tasks.
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@ Our goal is to gain a deeper understanding of these models, by
studying a simple patch-based model from a theoretical perspective
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The Model?

Originally proposed by Coates et al. (2011) and improved by-Thiry-et al= (2021).-
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Unsupervised Stage: { .
Obtain a patches dictionary D by
clustering patches from the data.

!Originally proposed by Coates et al. (2011) and improved by-Thiry-et al= (2021).
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Patch-Based

Image Embedding:

Define a patch-embedding ¢p(-)
mapping patches to R?, which in-
duces an image-embedding ®p(-).

Supervised Stage:
Train a linear model on top of the
fixed embedding on labeled data.
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Provable Efficient Learning Under Some Assumptions

@ We prove the algorithm learn efficiently — Patohes Distribution -
assuming the patches distribution has a /Q/ N Q
low covering-number (e.g., low intrinsic / @ Q
dimension).
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@ We prove the algorithm learn efficiently ~Patches Distribution ™

assuming the patches distribution has a /Q/ . Q
low covering-number (e.g., low intrinsic / Q)
dimension).

Theorem (Informal)

Fix €,6 € (0,1). Let Z be a distribution realizable by a shallow CNN. Let
No be the covering-number of the patches-distribution. Then, running the
algorithm with a dictionary of size Ny and poly(1/e,1/0, No) samples
returns w.p. at least 1 — & a hypothesis h s.t. Pr, ). z[h(x) # y] <.
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@ We also suggest a new embedding and prove it provides efficient
learning under some assumption on the target function.

Gran(M; D)=

k-neighbors indices
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Performance Analysis

@ The algorithm equipped with our embedding @, outperforms the
previously proposed embedding ®paq, and even a vanilla CNN.

Test Accuracy
Vanilla 1 hidden-layer CNN  80.08% (£0.16%)
®}ara With random patches  71.36% (0.24%)
&y, with random patches 76.04% (£0.13%)
®y,.rq With data patches 78.80% (£0.32%)
&y, with data patches 81.23% (+0.15%)

AB, AG, EM, AN and SS (TAU and HUJI) | Learning CNNs using Patch Based Features June 27, 2022



Performance Analysis

@ The algorithm equipped with our embedding @, outperforms the
previously proposed embedding ®paq, and even a vanilla CNN.

Test Accuracy
Vanilla 1 hidden-layer CNN  80.08% (£0.16%)
®}ara With random patches  71.36% (0.24%)
&y, with random patches 76.04% (£0.13%)
®y,.rq With data patches 78.80% (£0.32%)
&y, with data patches 81.23% (+0.15%)

@ Running the algorithm with ®g, in a layer-by-layer fashion results in
a deep model which gives further improvements, while the original
algorithm (with ®y,.4) does not scale with depth.
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Verifying Distributional Assumption

@ We verify that the distributional assumptions hold on real world data
by experimenting on CIFAR-10 and ImageNet datasets.
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@ We verify that the distributional assumptions hold on real world data
by experimenting on CIFAR-10 and ImageNet datasets.

@ We observed that patches sampled from the data are clustered
together.
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Thank you!

@ We provide new understanding of patch-based representations.

o If you find our work interesting please visit our poster.?

2You can also email us at alon.netser@mail.huji.ac.il or eran.malach@mail.huji.ac.il
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