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Determinantal Point Processes (DPP)
• Probability distribution on all subsets of a ground set of items [n] = 

{1, 2, …, n} characterized by kernel matrix 𝑳 ∈ ℝ!×! such that

• For example, in E-Commerce applications, the subsets 𝑆 are baskets 
(carts) bought by users.

• DPPs have traditionally been used to encourage diversity in 
recommender systems.

Pr(𝑆) ∝ det(𝐿𝑆)



Nonsymmetric DPP
• Discrete DPPs were introduced in ML literature in 2010 and work 

upto 2017 operated under the constraint that 𝑳 needs to be symmetric.
• Gartrell et.al (2021) low-rank NDPP decomposition: 

𝑳 = 𝑽𝑽𝑻 + 𝑩𝑪𝑩𝑻

where 𝑳 ∈ ℝ!×!, 𝑽 ∈ ℝ!×$, 𝑩 ∈ ℝ!×$, C ∈ ℝ$×$ with 𝑑 ≪ 𝑛 and C 
is a skew-symmetric matrix.



Our Problem Setup

• Stream: (𝒗𝟏, 𝒃𝟏), (𝒗𝟐, 𝒃𝟐), … , (𝒗𝐧, 𝒃𝐧) where 𝒗𝐭 , 𝒃𝐭 ∈ ℝ$ and 𝑑 ≪ 𝑛 .
• At every time step 𝑡, want to output subset S to

• Pr(S) ∝ 𝑓(𝑆) according to Non-symmetric Determinantal Point Process 
(NDPP).
• Maximum a Posteriori Inference (MAP Inference).

max 𝑓(𝑆) = det(𝑉!"𝑉𝑆 + 𝐵!"𝐶𝐵𝑆)



Main Contributions
• First formulation of the streaming and online MAP Inference problem for 

Non-symmetric Determinantal Point Processes (NDPPs).

• Design new one-pass algorithms for these problems and show that 
empirically they perform comparably to (or even better than) the offline 
greedy algorithm while using substantially lower memory.

• Hard instance for one-pass MAP inference of NDPPs in the online setting.



Experiments

• Key findings:
• Comparable (sometimes even better!!) than the offline greedy algorithm while:

• Taking a single pass over the data.
• Maintaining a valid solution at each time step.
• Using a fraction of the memory (when compared to offline algorithms)
• Fast update time after seeing any new point

• Tradeoff between Space and Solution quality.



Future Directions
• Proving approximation factor bounds for our online algorithms under data-

assumptions (beyond worst-case analysis).

• Designing new streaming and online algorithms using ideas from algorithms 
for submodular function maximization.

• Algorithms with constant number of passes (more than 1 but less than k)
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