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Determinantal Point Processes (DPP)

* Probability distribution on all subsets of a ground set of 1tems [n] =
{1, 2, ..., n} characterized by kernel matrix L € R™ " such that

Pr(S) « det(Ly)

* For example, in E-Commerce applications, the subsets S are baskets
(carts) bought by users.

* DPPs have traditionally been used to encourage diversity in
recommender systems.



Nonsymmetric DPP

e Discrete DPPs were introduced in ML literature in 2010 and work
upto 2017 operated under the constraint that L needs to be symmetric.

* Gartrell et.al (2021) low-rank NDPP decomposition:

L=VvVv! + BCB!

where L € R¥™, ¥V € R4, B e R™, Ce R4 withd < nand C
1s a skew-symmetric matrix.



Our Problem Setup

e Stream: (v4, bq), (U5, b,), ..., (v, b,) Where v, , b, € RYandd « n .
* At every time step t, want to output subset S to

max f(S) = det(VJ Vs + BICBy)

* Pr(S) « f(S) according to Non-symmetric Determinantal Point Process
(NDPP).

* Maximum a Posteriori Inference (MAP Inference).



Main Contributions

* First formulation of the streaming and online MAP Inference problem for
Non-symmetric Determinantal Point Processes (NDPPs).

* Design new one-pass algorithms for these problems and show that
empirically they perform comparably to (or even better than) the offline

greedy algorithm while using substantially lower memory.

* Hard instance for one-pass MAP inference of NDPPs in the online setting.



Solution

Experiments
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 Comparable (sometimes even better!!) than the offline greedy algorithm while:
* Taking a single pass over the data.
* Maintaining a valid solution at each time step.
* Using a fraction of the memory (when compared to offline algorithms)
* Fast update time after seeing any new point
* Tradeoff between Space and Solution quality.



Future Directions

* Proving approximation factor bounds for our online algorithms under data-
assumptions (beyond worst-case analysis).

* Designing new streaming and online algorithms using 1deas from algorithms
for submodular function maximization.

* Algorithms with constant number of passes (more than 1 but less than k)
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