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Background

Large amounts of counterfactual prediction works exists

For binary treatments, categorical treatments, multi-dimensional treatments
Under static setting and time-series setting.

The target of counterfactual prediction

PEHE (Precision in Estimating Heterogenous Treatment Effect) for binary treatment
Average outcome prediction error for more complex treatment
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Background

- More Accurate Prediction# Better Decision Making!
- For example, green line represents the true outcome curve, red and blue lines represent
two estimated outcome curves.
- The blue estimated outcome curve — smaller prediction error
- Blue optimal treatment t! is worse than red optimal treatment ¢t
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Background

- For decision-making, not all treatments are equally important

- When selecting movies, people pay more attention to popular movies.
- When hiring an employee, interviewer concentrate on the competitive candidates

- We focus more on Outcome-Oriented Treatments for counterfactual prediction
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Problem Formulation

- We consider the continuous treatment setting.

- Target: Learning counterfactual prediction model from observational dataset

- Observational dataset: {(x;, t;, ¥;)}i=123..n, Where n is the sample size
- x; € X is the confounder variables.
- t; €T = [a, b] is the continuous treatment
- y; € R is the corresponding outcome

- Evaluation: Treatment selection regret for model f: X x T — R

N

P (X) = arg max Yx(t). Yy (t) is potential outcome function

p! (X) = arg max f(X, t)



Theoretical Analysis on Regret

- We can have the following upper bound of treatment selection regret

Proposition 4.1. With the confounders X, treatments t, po-
tential outcome function Yx (t) defined as above, the treat-
ment selection regret (i.e. Equation 1) of counterfactual
prediction model f satisfies the following inequality:

Regret(f) < \/Ex[(Yx (o’ (X)) — (X, p/ (X))}




Objective Function

We can obtain the upper bound+/A(f) + /B(f) of regret.
For the stability of training process, we optimize vA(f) + B(f) instead.
Therefore, the final loss function for model with parameter 6 is: |
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Proposition 4.5. Assuming the function is parameterized by
A and t is hyper-parameters. 0, that is fg, and the functions A(fg) and B( fqy) are differ-

entiable and strictly convex on 0, 0% is the global minimum

point of \/ A(fg) + \/B(fy), then there exists v € R such

that
0" = arg min YA(fo) + B(fo) 9)



Implementation

The components of our algorithm are implemented as following:

Inverse propensity score:

We label {(x;, t;) }1<i<n With positive label (L=1) and label {(x;, t;) }1<i<n, t; ~ Unif(a, b) with
negative label (L=0). After training a classifier p(L|x, t) on these samples, we have

1 (b— a)p(L = 0[X, t)

p(t|X) p(L =1]X,t)

Outcome-oriented sample re-weighting:
In the first stage, we train the model with sample weights «* = G=apE)
In the second stage, we train the model for m rounds. For j* round, we train the model with
sample weights w”’ and obtain the model &) | . (6 )~ 3)/7)

W) —

Outcome prediction: % (b— a)p(t;[x;)

The loss function for training model at j** round is £0 = 25" w® . (£ (x;. t;) — :)?
n
=1




Empirical Results

We compare our method with some baselines,
Including SCIGAN, RMNet, IPS-BanditNet...

Evaluation metric: Treatment selection regret
Within-sample setting: Regret;, = + > | (Yx, (p*(x:)) — Yx, (p! (x:)))

T on

Out-of-sample setting: Average over new samples {x**}1 <i<n,..

Experiments on both synthetic-datasets and semi-synthetic datasets
The pseudo-optimal treatment of model f

p/(X)= argmax f(X,t)

te{a,a+ Z:Cf ..... b}

We set ¢ = 1001




Generating Synthetic Datasets

We generate the datasets as following
Generate confounders X = (z1,22,...,zq) Z; = |uj] u; < N(0,1)
Generate two constant vectors v; € R4*! and vy € R4x1

We define the outcome generation mechanism as Yx (t) = g(X,t) - t similar to gross
merchandise volume (GMV) in marketing.

Mimicking the demand curve in marketingll, we set three forms of g(X, t)
Linear: g(X,t) = maz(—vaX -t + 1.8v{X,0)
Exponential: g(X,t) = e~ V2 X t+viX
Logit: g(X, t) = 2/(1 + ev2Xt-viX)

The treatments are sampled from Beta distribution by

*o~ Beta(a, )
B= st T2

[1] Besbes, O. and Zeevi, A. On the (surprising) sufficiency of linear models for dynamic pricing with demand learning. Management
Science, 61(4):723-739, 2015.



Results on Synthetic Datasets

- Varying sample size: (Part of results)

Linear setting: Fix the degree of selection bias o = 6.0, varying the sample size n

n | n = 4000 | n = 6000 | n = 8000 | n = 10000
Methods | Within-S. | Out-of-S. | Within-S. | Out-of-S. | Within-S. | Out-of-S. | Within-S. | Out-of-S.
MLP 0.914£0.133 | 0.929+0.131 | 0.887£0.160 | 0.895+0.160 | 0.804£0.236 | 0.811:£0.239 | 0.833+£0.207 | 0.849+0.208
SCIGAN | 0.1560.002 | 0.166:£0.002 | 0.140£0.002 | 0.146£0.003 | 0.1260.002 | 0.132:£0.002 | 0.130£0.003 | 0.136=:0.002
RMNet 0.343+0.285 | 0.347+0.290 | 0.286:£0.241 | 0.287+0.244 | 0.181+0.098 | 0.17840.096 | 0.192+0.136 | 0.193+0.137
IPS-BanditNet | 0.12540.021 | 0.13040.022 | 0.10540.018 | 0.1094:0.019 | 0.10420.014 | 0.10840.015 | 0.10340.019 | 0.10740.020
BCRI 0.199+0.046 | 0.204:£0.047 | 0.172:£0.035 | 0.175+0.035 | 0.150+£0.026 | 0.154:£0.027 | 0.137£0.015 | 0.139+0.014
MLP-Debias _| 0.100£0.048 | 0.107:£0.051 | 0.081:£0.057 | 0.083£0.058 | 0.074=0.047 | 0.07320.047 | 0.05320.029 | 0.055+0.030_
L OOSR 0.04040.018 | 0.043+0.020 | 0.034:0.023 | 0.046+0.024 | 0.020+0.011 | 0.037+0.011 | 0.015+0.010 | 0.016-:0.010
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Generating Semi-synthetic Datasets

The confounder feature X is obtained from a real-world dataset TCGAL,
The outcome generation is:

Setting 1: Yx(t) = vi X+ (12viX —2) -t — (12vi X —2) - 2

Setting 2: Yx(t) =v{X +12t- (t — 2
The treatments are sampled from Beta distribution t; ~ Beta(a, 8) 8= () /2+2 o)

Setting 1: Varying the degree of selection bias «

a | a=6.0 \ a=6.5 | a="7.0 | a=75
Methods | Within-S. | Out-of-S. | Within-S. | Out-of-S. | Within-S. | Out-of-S. | Within-S. | Out-of-S.
MLP 1.547+0.001 | 1.532+0.001 | 1.547+0.001 | 1.532+0.001 | 1.547=+0.001 | 1.532+0.001 | 1.547+0.001 | 1.53240.001
SCIGAN 0.2514+0.006 | 0.254+0.006 | 0.387+0.008 | 0.3924+0.008 | 0.551+0.010 | 0.556+0.009 | 0.785+0.013 | 0.792+0.013
RMNet 0.546+0.360 | 0.550+0.363 | 0.5454+0.440 | 0.548+0.445 | 0.686+0.542 | 0.6854+0.537 | 0.5514+0.250 | 0.5494-0.249
IPS-BanditNet | 0.260+0.030 | 0.2594+0.030 | 0.26540.052 | 0.2664+0.053 | 0.27240.030 | 0.27540.030 | 0.28840.037 | 0.29140.037
BCRI 0.0914+0.063 | 0.093£0.061 | 0.121+0.088 | 0.12440.090 | 0.186+£0.039 | 0.187+0.038 | 0.502+0.176 | 0.499+0.171

MLP—Debiﬁ: 0.040+0.014 | 0.039+0.014 | 0.202+0.071 O.204i0.071_ 0.2764+0.083 | 0.27840.086 | 0.3464+0.090 | 0.35240.093
[OOSR~ 0TI I 0050005 % +T0sT | TFTciost| Tt E2720T 1 oy 05 ToBoS 6%

Setting 2: Varying the degree of selection bias «

a | a=4.0 | a=4.5 | a=2>5.0 | a =55
Methods |  Within-S. | Outof-S. | Within-S. | Outof-S. | Within-S. | Outof-S. | Within-S. | Out-of-S.
MLP 0.1004+0.064 | 0.098+0.058 | 0.210+£0.058 | 0.19540.054 | 0.192+0.068 | 0.182+0.063 | 0.279+0.073 | 0.266+0.071
SCIGAN 0.064+0.037 | 0.066+0.040 | 0.1394+0.082 | 0.143+0.082 | 0.148+0.057 | 0.1544+0.056 | 0.2094+0.095 | 0.2124+0.089
RMNet 0.1544+0.064 | 0.159+£0.065 | 0.145+0.068 | 0.149+0.070 | 0.165+0.129 | 0.169+0.128 | 0.189+0.080 | 0.192+0.075
IPS-BanditNet | 0.509+0.044 | 0.496+0.045 | 0.4914+0.033 | 0.473%+0.034 | 0.58040.125 | 0.569+0.133 | 0.623+0.156 | 0.608+0.155
BCRI 0.13240.034 | 0.152+0.036 | 0.2434+0.139 | 0.25440.135 | 0.267+0.141 | 0.2794+0.132 | 0.3134+0.107 | 0.3204+0.106

MLP-Debigs L.0.028L0.010 L 0.02840,030 |.0.1224+0073 | 0,113+0.065_ | 0.1123-0.089 | Q10720086 _L 0.17120.072 __0.16020.007
LOQSR_ L 001550014 L 001620.015 L0.10510.072 | 0.1004.0,07L | 0028-0.090 | 0095093 QuI54230,066.) 0u14320.062]

[1] Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.
M The cancer daenome atlac nan-cancer analvsic nroiect Natiire Genetice 45°1112— 1120 2012




Conclusion

We theoretically analyze that decision-making
performance is related to outcome prediction on
true/pseudo-optimal treatments

" We propose Outcome-Oriented Sample Re—weighting\
(OOSR) method to strengthen the prediction on
outcome-oriented treatment region.

J

4 N
Experimental results on synthetic datasets and semi-

synthetic datasets show the effectiveness of OOSR.
\ Y,
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