

Counterfactual Prediction for Outcome-Oriented Treatments

Hao Zou

Tsinghua University

Bo Li

Tsinghua University

Jiangang Han

Meituan

Shuiping Chen

Meituan

Xuetao Ding

Meituan

Peng Cui

Tsinghua University

Background

- Large amounts of counterfactual prediction works exists
 - For binary treatments, categorical treatments, multi-dimensional treatments
 - Under static setting and time-series setting.
- The target of counterfactual prediction
 - PEHE (Precision in Estimating Heterogenous Treatment Effect) for binary treatment
 - Average outcome prediction error for more complex treatment

Background

- More Accurate Prediction≠ Better Decision Making^[1]
 - For example, green line represents the true outcome curve, red and blue lines represent two estimated outcome curves.
 - The blue estimated outcome curve → smaller prediction error
 - Blue optimal treatment t^1 is worse than red optimal treatment t^2

[1] Fernandez-Loria, C. and Provost, F. Causal decision making and causal effect estimation are not the same. . . and why it matters. INFORMS Journal on Data Science, 2022.

Background

- For decision-making, not all treatments are equally important
 - When selecting movies, people pay more attention to popular movies.
 - When hiring an employee, interviewer concentrate on the competitive candidates

• ...

We focus more on Outcome-Oriented Treatments for counterfactual prediction

Problem Formulation

- We consider the continuous treatment setting.
- Target: Learning counterfactual prediction model from observational dataset
- Observational dataset: $\{(x_i, t_i, y_i)\}_{i=1,2,3,...,n}$, where n is the sample size
 - $x_i \in \mathcal{X}$ is the confounder variables.
 - $t_i \in \mathcal{T} = [a, b]$ is the continuous treatment
 - $y_i \in \mathbb{R}$ is the corresponding outcome
- **Evaluation**: Treatment selection regret for model $f: \mathcal{X} \times \mathcal{T} \longrightarrow \mathbb{R}$

$$\begin{split} Regret(f) &= \mathbb{E}_{\mathbf{X}} \left[Y_{\mathbf{X}}(\rho^*(\mathbf{X})) - Y_{\mathbf{X}}(\rho^f(\mathbf{X})) \right] \\ \rho^*(\mathbf{X}) &= \underset{\mathbf{t}}{\arg\max} \, Y_{\mathbf{X}}(\mathbf{t}), \\ \rho^f(\mathbf{X}) &= \underset{\mathbf{t}}{\arg\max} \, f(\mathbf{X}, \mathbf{t}) \end{split}$$

Theoretical Analysis on Regret

We can have the following upper bound of treatment selection regret

Proposition 4.1. With the confounders X, treatments t, potential outcome function $Y_X(t)$ defined as above, the treatment selection regret (i.e. Equation 1) of counterfactual prediction model f satisfies the following inequality:

$$Regret(f) \leq \sqrt{\mathbb{E}_{\mathbf{X}}[(Y_{\mathbf{X}}(\rho^f(\mathbf{X})) - f(\mathbf{X}, \rho^f(\mathbf{X})))^2]} \xrightarrow{\text{Approximate}} \frac{1}{n} \sum_{i=1}^n \frac{K\left((\rho^f(\mathbf{x}_i) - t_i)/\tau\right)}{\tau p(t_i|\mathbf{x}_i)} (y_i - f(\mathbf{x}_i, t_i))^2 \\ + \sqrt{\mathbb{E}_{\mathbf{X}}[(Y_{\mathbf{X}}(\rho^*(\mathbf{X})) - f(\mathbf{X}, \rho^*(\mathbf{X})))^2]} \qquad (4)$$

$$\triangleq \mathcal{A}(f)$$

$$\text{Upper bound}$$

$$\frac{1}{n} \sum_{i=1}^n \frac{(y_i - f(\mathbf{x}_i, t_i))^2}{(b - a)p(t_i|\mathbf{x}_i)} + L \cdot \frac{b - a}{2} \triangleq \mathcal{B}(f)$$

Objective Function

- We can obtain the upper bound $\sqrt{\mathcal{A}(f)} + \sqrt{\mathcal{B}(f)}$ of regret.
- For the stability of training process, we optimize $\gamma A(f) + B(f)$ instead.
- Therefore, the final loss function for model with parameter θ is:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \frac{1 + \lambda K\left(\left(\rho^{f_{\theta}}(\mathbf{x}_{i}) - t_{i}\right) / \tau\right)}{(b - a)p(t_{i}|\mathbf{x}_{i})} \cdot (y_{i} - f_{\theta}(\mathbf{x}_{i}, t_{i}))^{2}$$

 λ and τ is hyper-parameters.

Proposition 4.5. Assuming the function is parameterized by θ , that is f_{θ} , and the functions $\mathcal{A}(f_{\theta})$ and $\mathcal{B}(f_{\theta})$ are differentiable and strictly convex on θ , θ^* is the global minimum point of $\sqrt{\mathcal{A}(f_{\theta})} + \sqrt{\mathcal{B}(f_{\theta})}$, then there exists $\gamma \in \mathbb{R}^+$ such that

$$\theta^* = \arg\min_{\theta} \gamma \mathcal{A}(f_{\theta}) + \mathcal{B}(f_{\theta}) \tag{9}$$

Implementation

- The components of our algorithm are implemented as following:
- Inverse propensity score:
 - We label $\{(x_i, t_i)\}_{1 \le i \le n}$ with positive label (L=1) and label $\{(x_i, t_i')\}_{1 \le i \le n}$, $t_i' \sim Unif(a, b)$ with negative label (L=0). After training a classifier $\hat{p}(L|x,t)$ on these samples, we have

$$\frac{1}{\hat{p}(\mathbf{t}|\mathbf{X})} = \frac{(b-a)\hat{p}(L=0|\mathbf{X},\mathbf{t})}{\hat{p}(L=1|\mathbf{X},\mathbf{t})}$$

- Outcome-oriented sample re-weighting:
 - In the first stage, we train the model with sample weights $w_i^{(0)} = \frac{1}{(b-a)\hat{p}(t_i|\mathbf{x}_i)}$
 - In the second stage, we train the model for m rounds. For j^{th} round, we train the model with sample weights $w_i^{(j)}$ and obtain the model $f^{(j)}$ Outcome prediction: $w_i^{(j)} = \frac{1 + \lambda K \left((\rho^{f_{\theta}^{(j-1)}}(\mathbf{x}_j) t_j) / \tau \right)}{(h q) \hat{p}(t_i | \mathbf{x}_i)}$
- Outcome prediction:
 - The loss function for training model at j^{th} round is $\mathcal{L}^{(j)} = \frac{1}{n} \sum_{i=1}^n w_i^{(j)} \cdot (f_{\theta}^{(j)}(\mathbf{x}_i, t_i) y_i)^2$

Empirical Results

- We compare our method with some baselines,
 - including SCIGAN, RMNet, IPS-BanditNet...
- Evaluation metric: Treatment selection regret
 - Within-sample setting: $Regret_{in} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{\mathbf{x}_i}(\rho^*(\mathbf{x}_i)) Y_{\mathbf{x}_i}(\rho^f(\mathbf{x}_i)) \right)$
 - Out-of-sample setting: Average over new samples $\{\mathbf{x}_i^{tes}\}_{1 \leq i \leq n_{tes}}$
- Experiments on both synthetic-datasets and semi-synthetic datasets
- \bullet The pseudo-optimal treatment of model f

$$ho^f(\mathbf{X}) = rg \max_{\mathbf{t} \in \{a, a + rac{b-a}{q-1}, \dots, b\}} f(\mathbf{X}, \mathbf{t})$$
We set $q = 1001$

Generating Synthetic Datasets

- We generate the datasets as following
 - Generate confounders $\mathbf{X}=(x_1,x_2,...,x_d)$ $x_j=|u_j|$ $u_j\stackrel{iid}{\sim}\mathcal{N}(0,1)$
 - Generate two constant vectors $\mathbf{v}_1 \in \mathbb{R}^{d \times 1}$ and $\mathbf{v}_2 \in \mathbb{R}^{d \times 1}$
 - We define the outcome generation mechanism as $Y_{\mathbf{X}}(\mathbf{t}) = g(\mathbf{X}, \mathbf{t}) \cdot \mathbf{t}$ similar to gross merchandise volume (GMV) in marketing.
 - Mimicking the demand curve in marketing^[1], we set three forms of $g(\mathbf{X},\mathbf{t})$
 - Linear: $g(\mathbf{X}, \mathbf{t}) = max(-\mathbf{v}_2^\mathsf{T}\mathbf{X} \cdot \mathbf{t} + 1.8\mathbf{v}_1^\mathsf{T}\mathbf{X}, 0)$
 - Exponential: $g(\mathbf{X}, \mathbf{t}) = e^{-\mathbf{v}_2^\mathsf{T} \mathbf{X} \cdot \mathbf{t} + \mathbf{v}_1^\mathsf{T} \mathbf{X}}$
 - Logit: $g(\mathbf{X}, \mathbf{t}) = 2/(1 + e^{\mathbf{v}_2^\mathsf{T} \mathbf{X} \cdot \mathbf{t} \mathbf{v}_1^\mathsf{T} \mathbf{X}})$
 - The treatments are sampled from Beta distribution $\frac{t_i}{r} \sim \mathrm{Beta}(\alpha, \beta)$

$$\beta = \frac{\alpha - 1}{\rho^*(\mathbf{x}_i)/2r} + 2 - \alpha$$

[1] Besbes, O. and Zeevi, A. On the (surprising) sufficiency of linear models for dynamic pricing with demand learning. Management Science, 61(4):723–739, 2015.

Results on Synthetic Datasets

Varying sample size: (Part of results)

Linear setting: Fix the degree of selection bias $\alpha=6.0$, varying the sample size n											
\overline{n}	n = 4000		n = 6000		n = 8000		n = 10000				
Methods	Within-S.	Out-of-S.	Within-S.	Out-of-S.	Within-S.	Out-of-S.	Within-S.	Out-of-S.			
MLP	0.914±0.133	0.929±0.131	0.887±0.160	0.895±0.160	0.804±0.236	0.811±0.239	0.833±0.207	0.849±0.208			
SCIGAN	0.156 ± 0.002	0.166 ± 0.002	0.140 ± 0.002	0.146 ± 0.003	0.126 ± 0.002	0.132 ± 0.002	0.130 ± 0.003	0.136 ± 0.002			
RMNet	0.343 ± 0.285	0.347 ± 0.290	0.286 ± 0.241	0.287 ± 0.244	0.181 ± 0.098	0.178 ± 0.096	0.192 ± 0.136	0.193 ± 0.137			
IPS-BanditNet	0.125 ± 0.021	0.130 ± 0.022	0.105 ± 0.018	0.109 ± 0.019	0.104 ± 0.014	0.108 ± 0.015	0.103 ± 0.019	0.107 ± 0.020			
BCRI	0.199 ± 0.046	0.204 ± 0.047	0.172 ± 0.035	0.175 ± 0.035	0.150 ± 0.026	0.154 ± 0.027	0.137 ± 0.015	0.139 ± 0.014			
MLP-Debias	0.100 ± 0.048	0.107 ± 0.051	0.081 ± 0.057	0.083 ± 0.058	0.074 ± 0.047	0.073 ± 0.047	0.053 ± 0.029	0.055 ± 0.030			
OOSR	0.040 ±0.018	0.043 ±0.020	0.034 ±0.023	0.046 ±0.024	0.020 ±0.011	0.037 ±0.011	0.015 ±0.010	0.016 ±0.010			

Varying α

OOSR outperforms the baselines across different settings

Generating Semi-synthetic Datasets

- The confounder feature X is obtained from a real-world dataset TCGA^[1].
- The outcome generation is:
 - Setting 1: $Y_{\mathbf{X}}(\mathbf{t}) = \mathbf{v}_1^\mathsf{T} \mathbf{X} + (12\mathbf{v}_2^\mathsf{T} \mathbf{X} 2) \cdot \mathbf{t} (12\mathbf{v}_3^\mathsf{T} \mathbf{X} 2) \cdot \mathbf{t}^2$ Setting 2: $Y_{\mathbf{X}}(\mathbf{t}) = \mathbf{v}_1^\mathsf{T} \mathbf{X} + 12\mathbf{t} \cdot \left(\mathbf{t} 0.75 \frac{\mathbf{v}_2^\mathsf{T} \mathbf{X}}{\mathbf{v}_3^\mathsf{T} \mathbf{X}}\right)^2$
- The treatments are sampled from Beta distribution $t_i \sim \text{Beta}(\alpha, \beta)$ $\beta = \frac{\alpha 1}{\rho^*(\mathbf{x}_i)/2} + 2 \alpha$

	3		Setting 1: Varying	ng the degree of	selection bias α			, S	
α	$\alpha = 6.0$		$\alpha = 6.5$		$\alpha = 7.0$		$\alpha = 7.5$		
Methods	Within-S.	Out-of-S.	Within-S.	Out-of-S.	Within-S.	Out-of-S.	Within-S.	Out-of-S.	
MLP	1.547±0.001	1.532±0.001	1.547±0.001	1.532±0.001	1.547±0.001	1.532±0.001	1.547±0.001	1.532±0.001	
SCIGAN	0.251 ± 0.006	0.254 ± 0.006	0.387 ± 0.008	0.392 ± 0.008	0.551 ± 0.010	0.556 ± 0.009	0.785 ± 0.013	0.792 ± 0.013	
RMNet	0.546 ± 0.360	0.550 ± 0.363	0.545 ± 0.440	0.548 ± 0.445	0.686 ± 0.542	0.685 ± 0.537	0.551 ± 0.250	0.549 ± 0.249	
IPS-BanditNet	0.260 ± 0.030	0.259 ± 0.030	0.265 ± 0.052	0.266 ± 0.053	0.272 ± 0.030	0.275 ± 0.030	0.288 ± 0.037	0.291 ± 0.037	
BCRI	0.091 ± 0.063	0.093 ± 0.061	0.121 ± 0.088	0.124 ± 0.090	0.186 ± 0.039	0.187 ± 0.038	0.502 ± 0.176	0.499 ± 0.171	
MLP-Debias	0.040 ± 0.014	0.039 ± 0.014	0.202 ± 0.071	0.204 ± 0.071	0.276 ± 0.083	0.278 ± 0.086	0.346 ± 0.090	0.352 ± 0.093	
OOSR	0.016 ±0.005	0.015 ±0.005	0.096 ±0.051	0.097 ±0.051	0.125 ±0.042	0.127 ±0.041	0.187 ±0.052	0.190 ±0.053	
Setting 2: Varying the degree of selection bias α									
10,35		, (³)	Setting 2: Varyir	ng the degree of	selection bias α	, (S)			
α	$\alpha =$	= 4.0		ng the degree of s		: 5.0	$ \qquad \alpha =$: 5.5	
α Methods	$\alpha =$ Within-S.					5.0 Out-of-S.	$\alpha = $	5.5 Out-of-S.	
		= 4.0	$\alpha = \frac{1}{\alpha}$	= 4.5	α =		1		
Methods	Within-S.	= 4.0 Out-of-S.	$\alpha = \frac{1}{\alpha}$ Within-S.	= 4.5 Out-of-S.	$\alpha = \frac{1}{2}$ Within-S.	Out-of-S.	Within-S.	Out-of-S.	
Methods MLP	Within-S. 0.100±0.064	= 4.0 Out-of-S. 0.098±0.058	$\alpha = \frac{1}{10000000000000000000000000000000000$	= 4.5 Out-of-S. 0.195±0.054	$\begin{array}{ c c c c } \hline & \alpha = \\ \hline & \text{Within-S.} \\ \hline & 0.192 \pm 0.068 \\ \hline \end{array}$	Out-of-S.	Within-S.	Out-of-S.	
Methods MLP SCIGAN	Within-S. 0.100±0.064 0.064±0.037	Out-of-S. 0.098±0.058 0.066±0.040	$\alpha = \frac{1}{10000000000000000000000000000000000$	= 4.5 Out-of-S. 0.195±0.054 0.143±0.082	$\alpha = \frac{1}{100}$ Within-S. $\frac{1}{100}$ 0.192±0.068 0.148±0.057	Out-of-S. 0.182±0.063 0.154±0.056	Within-S. 0.279±0.073 0.209±0.095	Out-of-S. 0.266±0.071 0.212±0.089	
Methods MLP SCIGAN RMNet	Within-S. 0.100±0.064 0.064±0.037 0.154±0.064	Out-of-S. 0.098±0.058 0.066±0.040 0.159±0.065	$\begin{array}{ c c c c c }\hline & \alpha = \\ & \text{Within-S.} \\ \hline & 0.210 \pm 0.058 \\ & 0.139 \pm 0.082 \\ & 0.145 \pm 0.068 \\ \hline \end{array}$	= 4.5 Out-of-S. 0.195±0.054 0.143±0.082 0.149±0.070	$\begin{array}{ c c c c }\hline & \alpha = \\ \hline & \text{Within-S.} \\ \hline & 0.192 \pm 0.068 \\ & 0.148 \pm 0.057 \\ \hline & 0.165 \pm 0.129 \\ \hline \end{array}$	Out-of-S. 0.182±0.063 0.154±0.056 0.169±0.128	Within-S. 0.279±0.073 0.209±0.095 0.189±0.080	Out-of-S. 0.266±0.071 0.212±0.089 0.192±0.075	
Methods MLP SCIGAN RMNet IPS-BanditNet	Within-S. 0.100±0.064 0.064±0.037 0.154±0.064 0.509±0.044	- 4.0 Out-of-S. 0.098±0.058 0.066±0.040 0.159±0.065 0.496±0.045	$\begin{array}{ c c c c c }\hline & \alpha = \\ \hline & \text{Within-S.} \\ \hline & 0.210 \pm 0.058 \\ 0.139 \pm 0.082 \\ 0.145 \pm 0.068 \\ 0.491 \pm 0.033 \\ \hline \end{array}$	= 4.5 Out-of-S. 0.195±0.054 0.143±0.082 0.149±0.070 0.473±0.034	$\begin{array}{ c c c } \hline & \alpha = \\ \hline & \text{Within-S.} \\ \hline & 0.192 \pm 0.068 \\ & 0.148 \pm 0.057 \\ & 0.165 \pm 0.129 \\ & 0.580 \pm 0.125 \\ \hline \end{array}$	Out-of-S. 0.182±0.063 0.154±0.056 0.169±0.128 0.569±0.133	Within-S. 0.279±0.073 0.209±0.095 0.189±0.080 0.623±0.156 0.313±0.107	Out-of-S. 0.266±0.071 0.212±0.089 0.192±0.075 0.608±0.155	

[1] Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J. M. The cancer genome atlas pan-cancer analysis project. Nature Genetics. 45:1113–1120, 2013.

Conclusion

We theoretically analyze that decision-making performance is related to outcome prediction on true/pseudo-optimal treatments

We propose Outcome-Oriented Sample Re-weighting (OOSR) method to strengthen the prediction on outcome-oriented treatment region.

Experimental results on synthetic datasets and semisynthetic datasets show the effectiveness of OOSR.

Thank you!