Private frequency estimation

* n users, each holding an item from a universe of size k
* |tems: words in private documents, browser settings

e Goal: construct the frequency histogram (how many
times each value occurs) as accurately as possible while
satisfying e-local privacy



Private frequency estimation
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e e-privateif
Pr[m; = m|d; = d] < e Pr[m; = m|d; =d'] vm,d,d’
* Minimize error due to privacy requirement
e Our metric: sum of variance of all histogram entries
* Minimize communication
» Efficient encoding for users and decoding for server
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Why asymptotic optimal error is
not enough?

e Cannot improve error with more resources (more
time, more memory)

* In many applications (finding new words, malicious
homepage domains, etc), frequency estimation is
used to identify popular items above the error floor

* Frequency distribution tends to have heavy tail

* Halving the error can result in a constant factor
more items being discovered



Our contribution
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* PGR has optimal error, low communication, and fast decoding
* Hybrid PGR gives tradeoff between error and decoding time



Framework for the local
randomizer [ASZ "19]

* Input-message matrix (k inputs, M messages)

* Each input v corresponds to a set of “preferred” messages S,, C
U (U: set of all messages)

 Eachm € §,, is sent with probability ep
* Eachm & §, is sent with probability p

 Trivially satisfy privacy constraints



Construction using projective
geometry

* Field F of size q, vector space F!
* A vector is canonical if the first non-zero is 1
* Inputs and messages are canonical vectors in F¢
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* For input vector u, the set §;, consists of canonical vectors
orthogonal to u (a subspace of Ft)

different input values, same for messages
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The regular sizes and ~ =¢t make the variance near optimal
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Reconstructing frequency histogram

* To estimate the number of users with input u, need to count the number of
messages in S;, (canonical vectors in a subspace)

 Structure of subspaces allows for fast dynamic programming algorithm



Experiment

e Zipfian distribution: PMF(i) ~1/i°
 HPG: “hybrid” version of algorithm trading off time and error
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