
Private frequency estimation

• n users, each holding an item from a universe of size k

• Items: words in private documents, browser settings

• Goal: construct the frequency histogram (how many 
times each value occurs) as accurately as possible while 
satisfying 𝜖-local privacy



Private frequency estimation

𝑑𝑖

• 𝜖-private if
Pr 𝑚𝑖 = 𝑚 𝑑𝑖 = 𝑑 ≤ 𝑒𝜖 Pr 𝑚𝑖 = 𝑚 𝑑𝑖 = 𝑑′ ∀𝑚, 𝑑, 𝑑′

• Minimize error due to privacy requirement
• Our metric: sum of variance of all histogram entries

• Minimize communication
• Efficient encoding for users and decoding for server



Previous works
Algorithm Communication Error/Variance Server time

Randomized Resp. 
[Warner ’65]

log𝑘 𝑛 2𝑒𝜖 + 𝑘

𝑒𝜖 − 1 2

𝑛 + 𝑘

RAPPOR [EPK ‘14] 𝑘 4𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛𝑘

Subset Selection 
[YB ’17, WHN+ ’19]

𝑘𝜖

𝑒𝜖 + 1

4𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑘𝑛

𝑒𝜖 + 1

PI-RAPPOR [FT ’21] log𝑘 4𝑛𝑒𝜖

𝑒𝜖 − 1 2 min 𝑛 + 𝑘2,
𝑘𝑛

𝑒𝜖 + 1

Hadamard Resp. 
[ASZ ’19]

log𝑘 36𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛 + 𝑘 log 𝑘

Recursive Hadamard 
Resp. [CKO ’20]

log𝑘 8𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛 + 𝑘 log 𝑘



Previous works
Algorithm Communication Error/Variance Server time

Randomized Resp. 
[Warner ‘65]

log𝑘 𝑛 2𝑒𝜖 + 𝑘

𝑒𝜖 − 1 2

𝑛 + 𝑘

RAPPOR [EPK ‘14] 𝑘 4𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛𝑘

Subset Selection
[YB ‘17, WHN+ ‘19]

𝑘𝜖

𝑒𝜖 + 1

4𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑘𝑛

𝑒𝜖 + 1

PI-RAPPOR [FT ’21] log𝑘 4𝑛𝑒𝜖

𝑒𝜖 − 1 2 min 𝑛 + 𝑘2,
𝑘𝑛

𝑒𝜖 + 1

Hadamard Resp. 
[ASZ ’19]

log𝑘 36𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛 + 𝑘 log 𝑘

Recursive Hadamard 
Resp. [CKO ’20]

log𝑘 8𝑛𝑒𝜖

𝑒𝜖 − 1 2

𝑛 + 𝑘 log 𝑘

Great Good Poor



Why asymptotic optimal error is 
not enough?
• Cannot improve error with more resources (more 

time, more memory)

• In many applications (finding new words, malicious 
homepage domains, etc), frequency estimation is 
used to identify popular items above the error floor

• Frequency distribution tends to have heavy tail

• Halving the error can result in a constant factor 
more items being discovered
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• PGR has optimal error, low communication, and fast decoding
• Hybrid PGR gives tradeoff between error and decoding time



Framework for the local 
randomizer [ASZ ’19]
• Input-message matrix (k inputs, M messages)

• Each input 𝑣 corresponds to a set of “preferred” messages 𝑆𝑣 ⊂
𝑈 (𝑈: set of all messages)

• Each 𝑚 ∈ 𝑆𝑣 is sent with probability 𝑒𝜖𝑝

• Each 𝑚 ∉ 𝑆𝑣 is sent with probability 𝑝

• Trivially satisfy privacy constraints

Message 1 Message 2 Message 3 Message 4

Input 1

Input 2

Input 3



Construction using projective 
geometry
• Field 𝐹 of size q, vector space 𝐹𝑡

• A vector is canonical if the first non-zero is 1

• Inputs and messages are canonical vectors in 𝐹𝑡

• 𝑘 =
𝑞𝑡−1

𝑞−1
different input values, same for messages

• For input vector 𝑢, the set 𝑆𝑢 consists of canonical vectors 
orthogonal to 𝑢 (a subspace of 𝐹𝑡)

• Each set has size 𝑐𝑠𝑒𝑡 =
𝑞𝑡−1−1

𝑞−1

• Two different sets have intersection of size 𝑐𝑖𝑛𝑡 =
𝑞𝑡−2−1

𝑞−1

• The regular sizes and 𝑘

𝑐𝑠𝑒𝑡
≈

𝑐𝑠𝑒𝑡

𝑐𝑖𝑛𝑡
make the variance near optimal



Reconstructing frequency histogram

• To estimate the number of users with input 𝑢, need to count the number of 
messages in 𝑆𝑢 (canonical vectors in a subspace)

• Structure of subspaces allows for fast dynamic programming algorithm



Experiment

• Zipfian distribution: PMF(i) ~1/𝑖𝑠

• HPG: “hybrid” version of algorithm trading off time and error


