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● Often, we want to make sure some concept is not encoded.
○ Word embeddings without tense distinctions
○ Sensitivity to content, but not to style
○ Representations that do not leak protected attributes

Controlled Representation Learning
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Useful use case: the concept lives in low-dimensional subspace within 
the representation space.

How can we identify the concept subspace?
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Formulation

We formulate an adversarial game between a projection 
matrix            that tries to remove the information, and a 
predictor         that tries to recover it.

Projection matrix that tries to 
maximize the loss

Predictor that tries to
minimize it



Side trip: Iterative Nullspace Projection (INLP)
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h

Features that θ finds indicative of gender

Remove gender features

Nullspace projections

how?

Project h to the orthogonal complement of θ
Iteratively



Special Cases

We treat several important special cases of this objective:

      



Special Cases

We treat several important special cases of this objective:
1. Linear regression

      



Special Cases

We treat several important special cases of this objective:
1. Linear regression
2. Rayleigh quotient losses 

      



Special Cases

We treat several important special cases of this objective:
1. Linear regression
2. Rayleigh quotient losses 
3. Classification

      



Special Cases

We treat several important special cases of this objective:
1. Linear regression
2. Rayleigh quotient losses 
3. Classification

      

Closed-form solution 
(details in the paper)



Special Cases

We treat several important special cases of this objective:
1. Linear regression
2. Rayleigh quotient losses 
3. Classification

      

Closed-form solution 
(details in the paper)

Gradient-based optimization



Classification Case

The loss is an arbitrary classification loss (hinge, logistic, etc).
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Convex Relaxation (RLACE)

In training, we optimize over an arbitrary matrix       , and we project it to the 
convex hull of orthogonal projection matrices at each step.  

Rank K 
orthogonal 
projection 
matrices

Their convex hull
proj



Experimental Evaluation

We conduct experiments on GloVe embeddings and on contextualized 
representations of short biographies (annotated for both gender and 
profession).
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Additional results in the paper. 
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Conclusions
- We have formally defined the problem of removing linear 

“concept subspaces”
- We present analytical solutions in some cases, and provide a 

relaxation which works well for others.
- High level conclusion: it’s sometimes valuable to constrain our 

model (in contrast to the “more parameters is better” trend)



Thanks!


