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Motivation
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Controlled Representation Learning

e Often, we want to make sure some concept is not encoded.
o Word embeddings without tense distinctions
o Sensitivity to content, but not to style
o Representations that do not leak protected attributes
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Useful use case: the concept lives in low-dimensional subspace within
the representation space.

How can we identify the concept subspace?
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Formulation

We formulate an adversarial game between a projection
matrix PePy, that tries to remove the information, and a
predictor 606 that tries to recover it.
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Side trip: Iterative Nullspace Projection (INLP)
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Nullspace projections
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Nullspace projections

Features that 6 finds indicative of gender

Project N to the orthogonal complement of 6
Iteratively
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Special Cases

We treat several important special cases of this objective:
L Llnear reg resglon Closed-form solution
2. Rayleigh quotient losses | (details in the paper)
3. Classification 1 Gradient-based optimization




Classification Case

The loss is an arbitrary classification loss (hinge, logistic, etc).
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Convex Relaxation (RLACE)

The problem is nonconvex in P.
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Convex Relaxation (RLACE)

In training, we optimize over an arbitrary matrix P, and we project it to the

convex hull of orthogonal projection matrices at each step.

P
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Experimental Evaluation

We conduct experiments on GloVe embeddings and on contextualized
representations of short biographies (annotated for both gender and
profession).
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Results

PCA: less clustering of representations by gender
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PCA: less clustering of representations by gender
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Comparison with INLP - BERT (bios data)
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Additional results in the paper.
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Conclusions

We have formally defined the problem of removing linear
‘concept subspaces’

We present analytical solutions in some cases, and provide a
relaxation which works well for others.

High level conclusion: its sometimes valuable to constrain our
model (in contrast to the "more parameters is better” trend)







