

Linear Adversarial Concept Erasure

Shauli Ravfogel, Michael Twiton, Yoav Goldberg and Ryan Cotterell

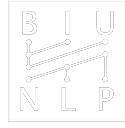
Motivation

Neural models learn rich representations

Motivation

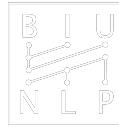
Neural models learn rich representations
But can we control their content?

Controlled Representation Learning



- Often, we want to make sure some concept is *not* encoded.

Controlled Representation Learning

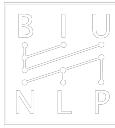


- Often, we want to make sure some concept is *not* encoded.
 - Word embeddings without tense distinctions

Controlled Representation Learning

- Often, we want to make sure some concept is *not* encoded.
 - Word embeddings without tense distinctions
 - Sensitivity to content, but not to style

Controlled Representation Learning



- Often, we want to make sure some concept is *not* encoded.
 - Word embeddings without tense distinctions
 - Sensitivity to content, but not to style
 - **Representations that do not leak protected attributes**

The linear concept subspace hypothesis

Useful use case: the concept lives in low-dimensional **subspace** within the representation space.

The linear concept subspace hypothesis

Useful use case: the concept lives in low-dimensional **subspace** within the representation space.

How can we identify the concept subspace?

Formulation

We formulate an **adversarial game** between a projection matrix $P \in \mathcal{P}_k$ that tries to remove the information, and a predictor $\theta \in \Theta$ that tries to recover it.

Formulation

We formulate an **adversarial game** between a projection matrix $P \in \mathcal{P}_k$ that tries to remove the information, and a predictor $\boldsymbol{\theta} \in \Theta$ that tries to recover it.

$$\min_{\boldsymbol{\theta} \in \Theta} \max_{P \in \mathcal{P}_k} \sum_{n=1}^N \ell\left(y_n, g^{-1}\left(\boldsymbol{\theta}^\top P \mathbf{x}_n\right)\right)$$

Formulation

We formulate an **adversarial game** between a projection matrix $P \in \mathcal{P}_k$ that tries to remove the information, and a predictor $\theta \in \Theta$ that tries to recover it.

$$\min_{\theta \in \Theta} \max_{P \in \mathcal{P}_k} \sum_{n=1}^N \ell\left(y_n, g^{-1}\left(\theta^\top P \mathbf{x}_n\right)\right)$$

Projection matrix that tries to
maximize the loss

Formulation

We formulate an **adversarial game** between a projection matrix $P \in \mathcal{P}_k$ that tries to remove the information, and a predictor $\theta \in \Theta$ that tries to recover it.

$$\min_{\theta \in \Theta} \max_{P \in \mathcal{P}_k} \sum_{n=1}^N \ell\left(y_n, g^{-1}\left(\boxed{\theta}^\top \boxed{P} \mathbf{x}_n\right)\right)$$

Predictor that tries to
minimize it

Projection matrix that tries to
maximize the loss

Side trip: Iterative Nullspace Projection (INLP)

Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection

Shauli Ravfogel^{1,2} **Yanai Elazar^{1,2}** **Hila Gonen¹** **Michael Twiton³** **Yoav Goldberg^{1,2}**

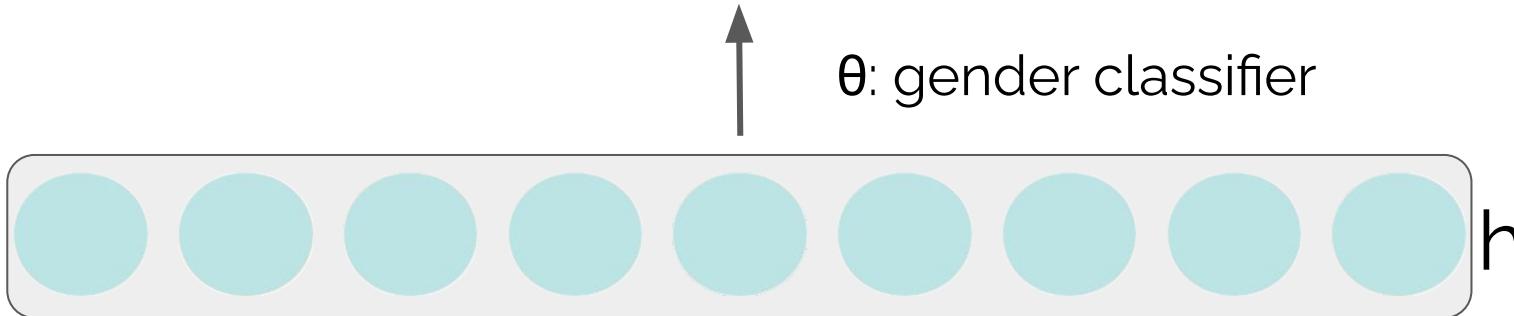
¹Computer Science Department, Bar Ilan University

²Allen Institute for Artificial Intelligence

³Independent researcher

shauli.ravfogel yanaiela hilagon mtwiton101 yoav.goldberg@gmail.com

Nullspace projections



Nullspace projections

Female!

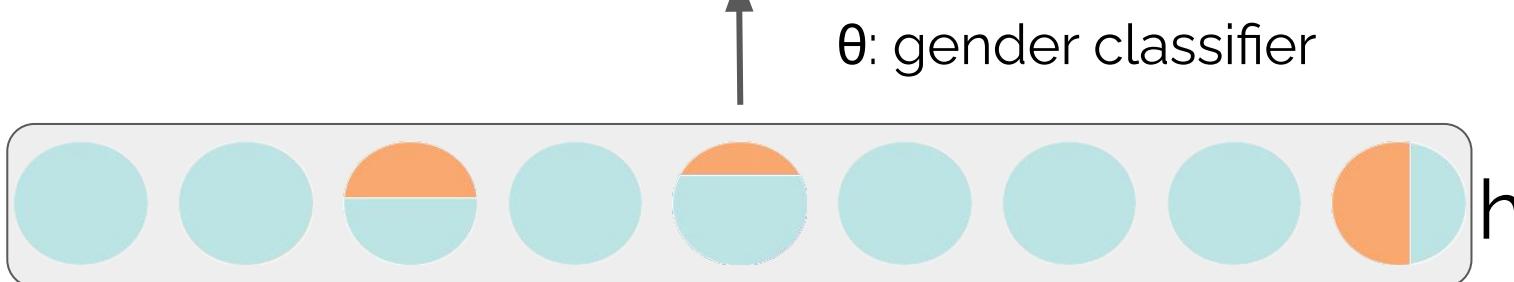
θ : gender classifier

Nullspace projections

Features that θ finds indicative of gender

Female!

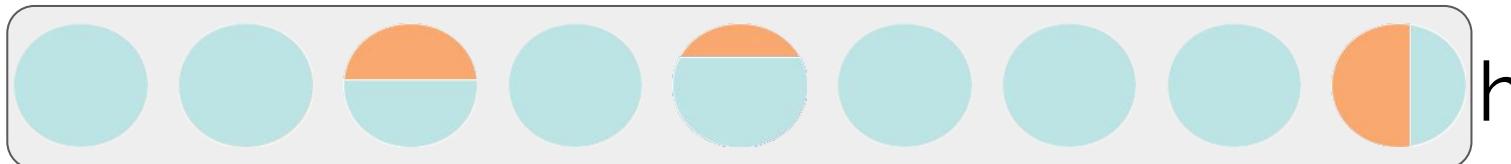
θ : gender classifier



Nullspace projections

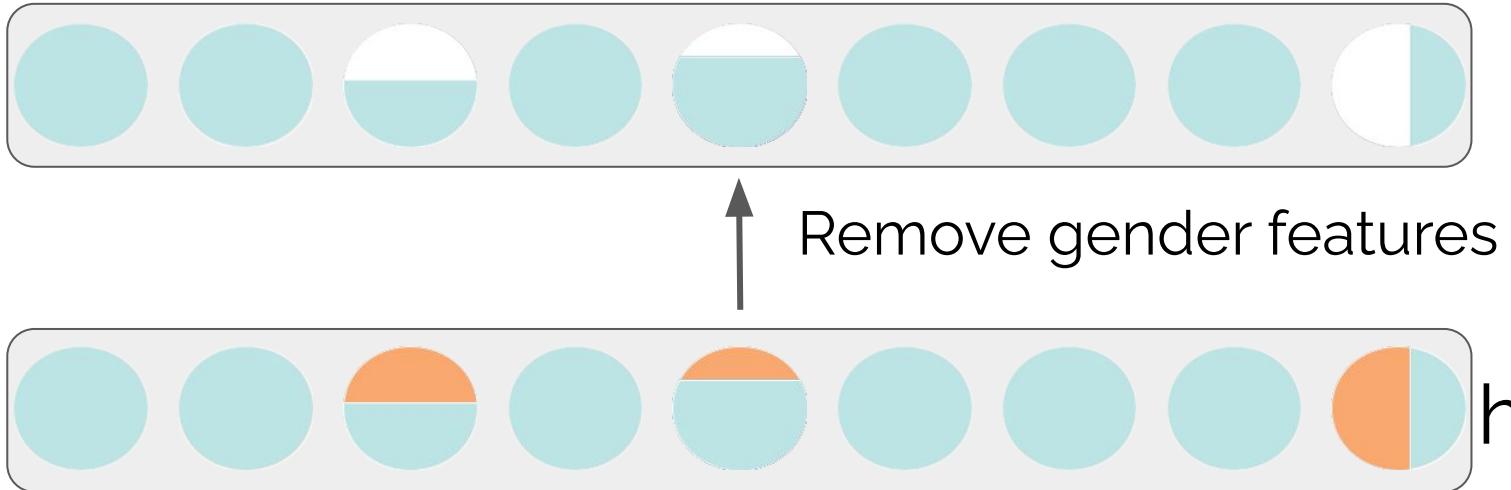
Features that θ finds indicative of gender

Remove gender features



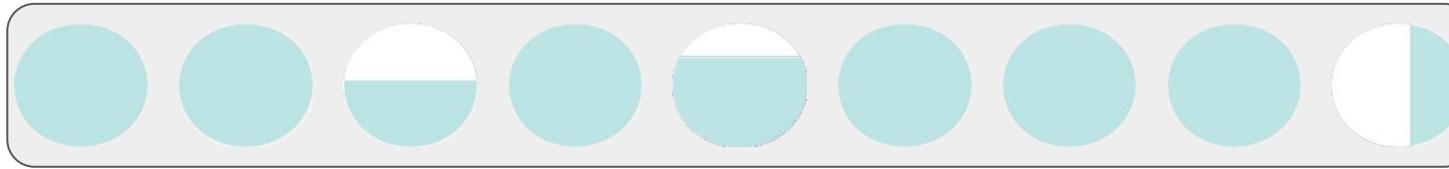
Nullspace projections

Features that θ finds indicative of gender

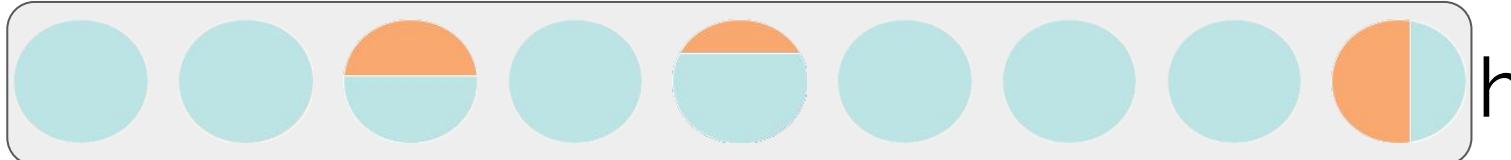


Nullspace projections

Features that θ finds indicative of gender



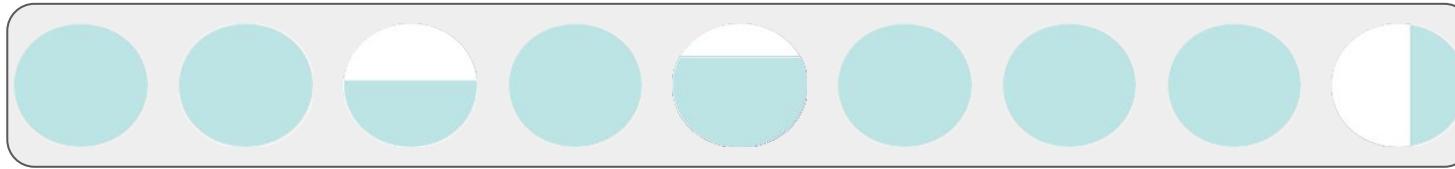
↑ Remove gender features **how?**



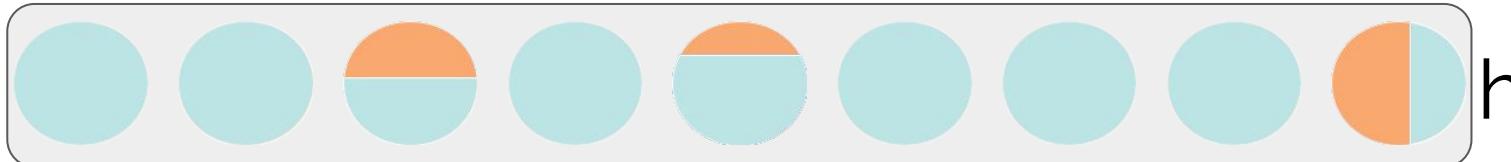
Nullspace projections

Features that θ finds indicative of gender

Project h to the orthogonal complement of θ



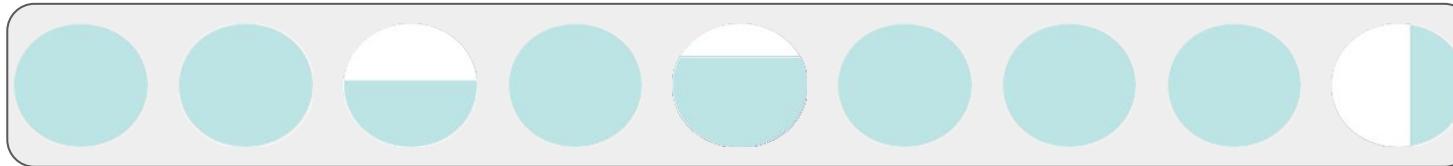
Remove gender features **how?**



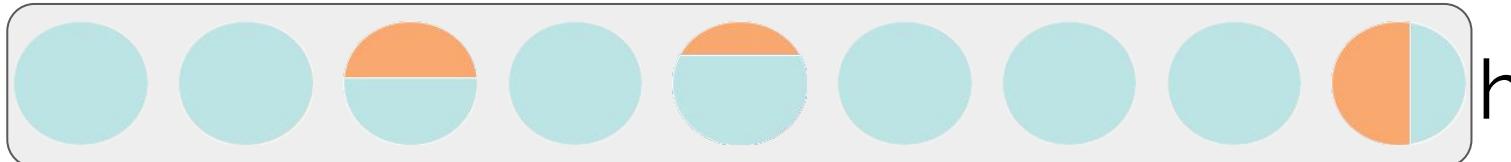
Nullspace projections

Features that θ finds indicative of gender

Project h to the orthogonal complement of θ
Iteratively



Remove gender features **how?**



Special Cases

We treat several important special cases of this objective:

Special Cases

We treat several important special cases of this objective:

1. Linear regression

Special Cases

We treat several important special cases of this objective:

1. Linear regression
2. Rayleigh quotient losses

Special Cases

We treat several important special cases of this objective:

1. Linear regression
2. Rayleigh quotient losses
- 3. Classification**

Special Cases

We treat several important special cases of this objective:

- 1. Linear regression
- 2. Rayleigh quotient losses
- 3. Classification**

]

Closed-form solution
(details in the paper)

Special Cases

We treat several important special cases of this objective:

- 1. Linear regression
- 2. Rayleigh quotient losses
- 3. **Classification**

The diagram consists of three numbered items: 1. Linear regression, 2. Rayleigh quotient losses, and 3. Classification. A bracket on the right side of the list groups items 1 and 2 together, with the text 'Closed-form solution (details in the paper)' written in blue next to it. A bracket on the right side of the list groups item 3 with the text 'Gradient-based optimization' written in blue next to it.

**Closed-form solution
(details in the paper)**

Gradient-based optimization

Classification Case

The loss is an arbitrary classification loss (hinge, logistic, etc).

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^D} \max_{P \in \mathcal{P}_k} \sum_{n=1}^N y_n \log \frac{\exp \boldsymbol{\theta}^\top P \mathbf{x}_n}{1 + \exp \boldsymbol{\theta}^\top P \mathbf{x}_n}$$

Convex Relaxation (RLACE)

The problem is nonconvex in P .

Convex Relaxation (RLACE)

The problem is nonconvex in P .

$$\min_{\theta \in \mathbb{R}^D} \max_{\substack{P \in \mathcal{P}_k \\ P \in \mathcal{F}_k}} \sum_{n=1}^N y_n \log \frac{\exp \theta^\top P \mathbf{x}_n}{1 + \exp \theta^\top P \mathbf{x}_n}$$

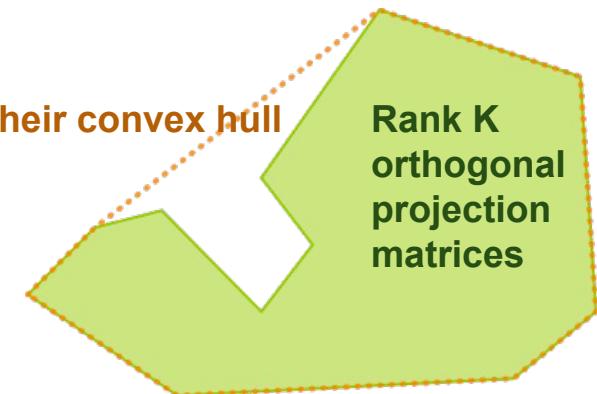
Convex Relaxation (RLACE)

The problem is nonconvex in P .

$$\min_{\theta \in \mathbb{R}^D} \max_{\substack{P \in \mathcal{P}_k \\ P \in \mathcal{F}_k}} \sum_{n=1}^N y_n \log \frac{\exp \theta^\top P \mathbf{x}_n}{1 + \exp \theta^\top P \mathbf{x}_n}$$

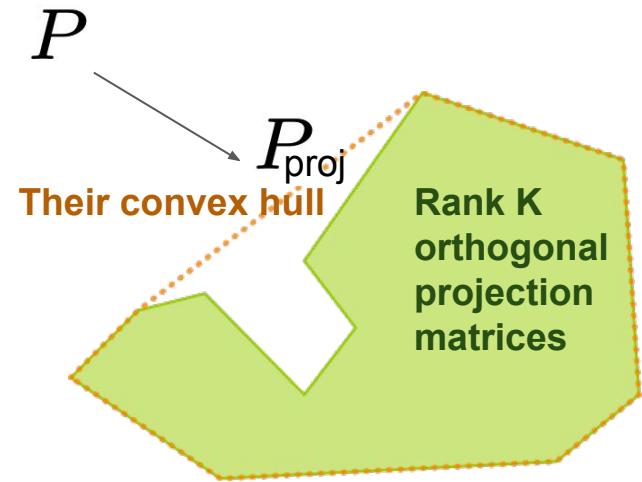
Where we define:

$$\mathcal{F}_k = \text{conv}(\mathcal{P}_k)$$



Convex Relaxation (RLACE)

In training, we optimize over an arbitrary matrix P , and we project it to the convex hull of orthogonal projection matrices at each step.



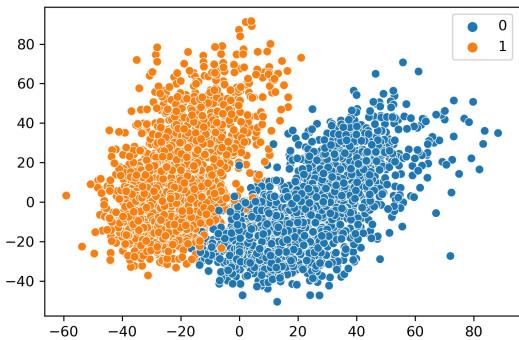
Experimental Evaluation

We conduct experiments on GloVe embeddings and on contextualized representations of short biographies (annotated for both gender and profession).

Results

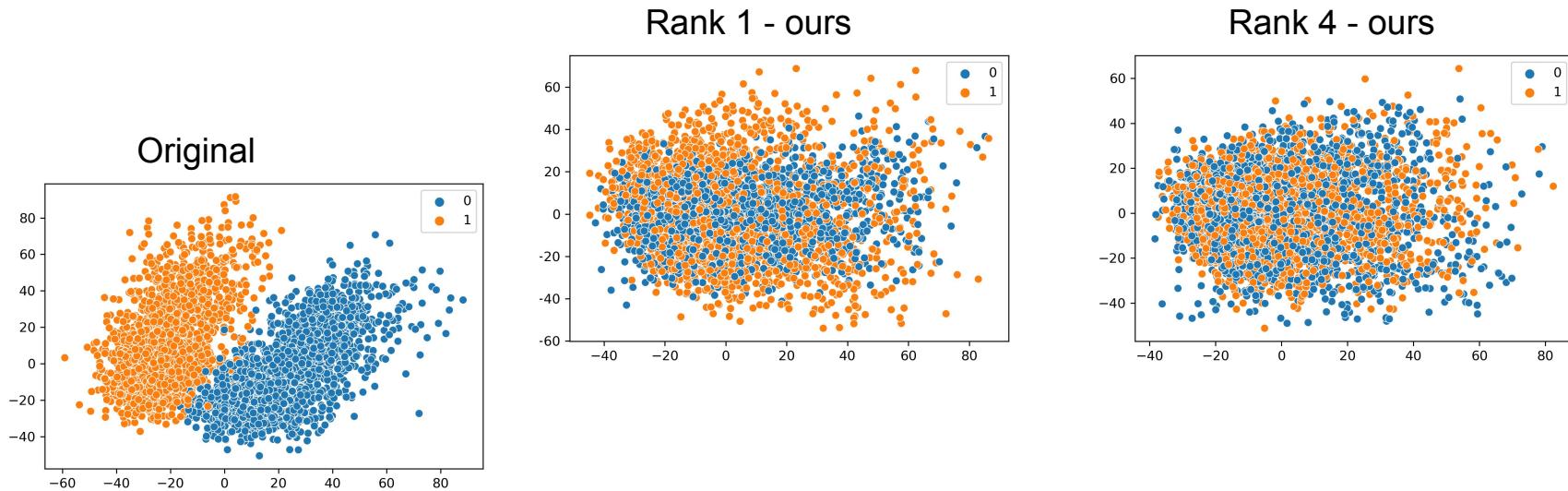
PCA: less clustering of representations by gender

Original



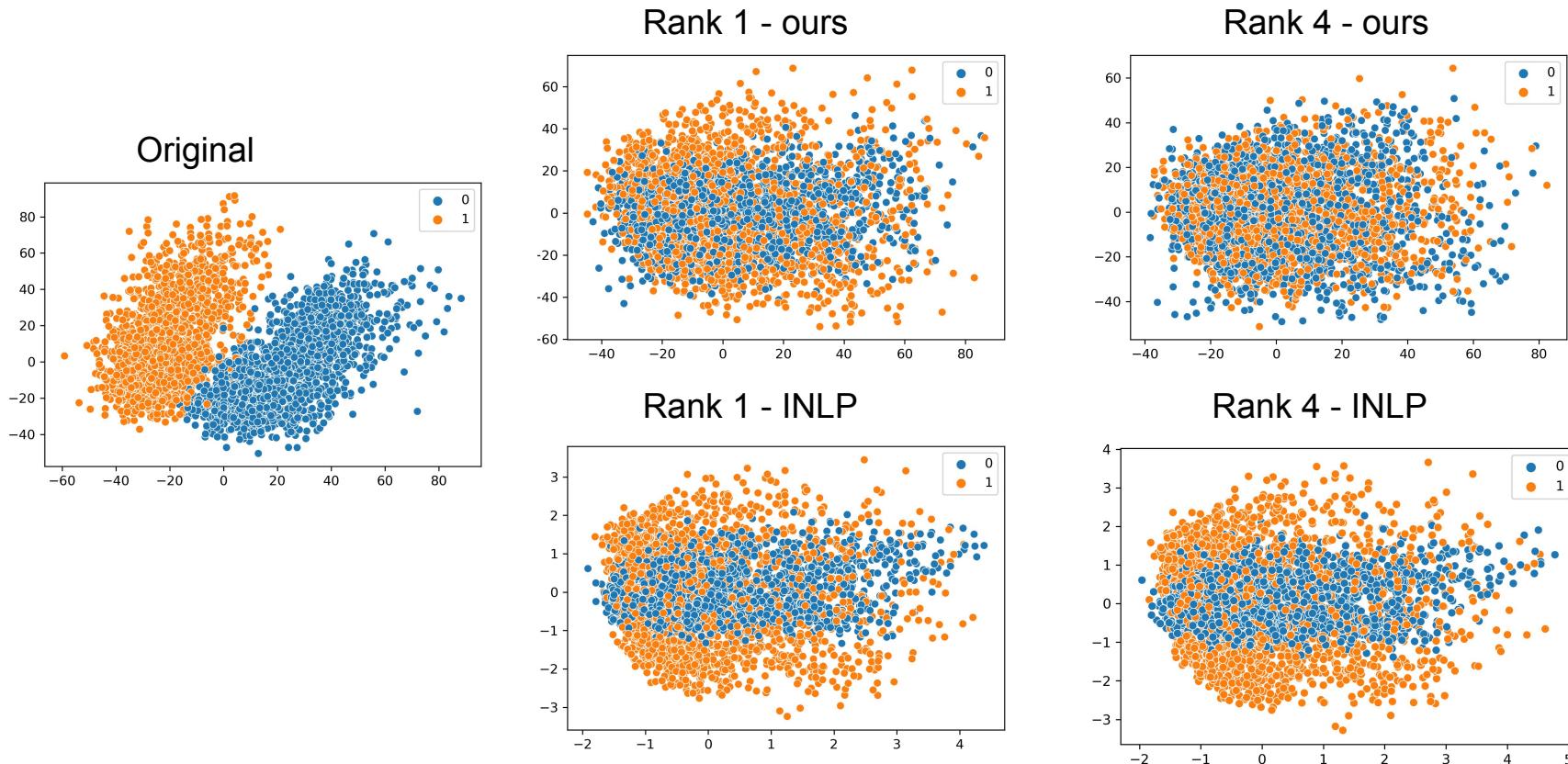
Results

PCA: less clustering of representations by gender

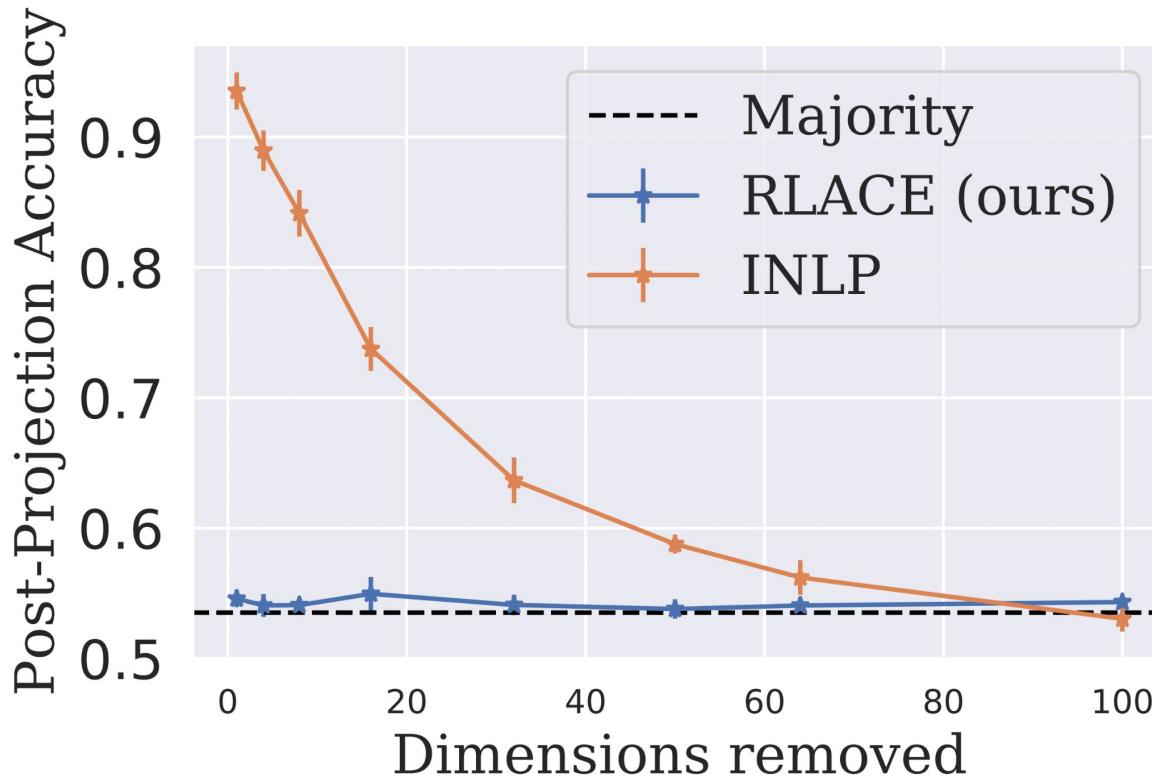


Results

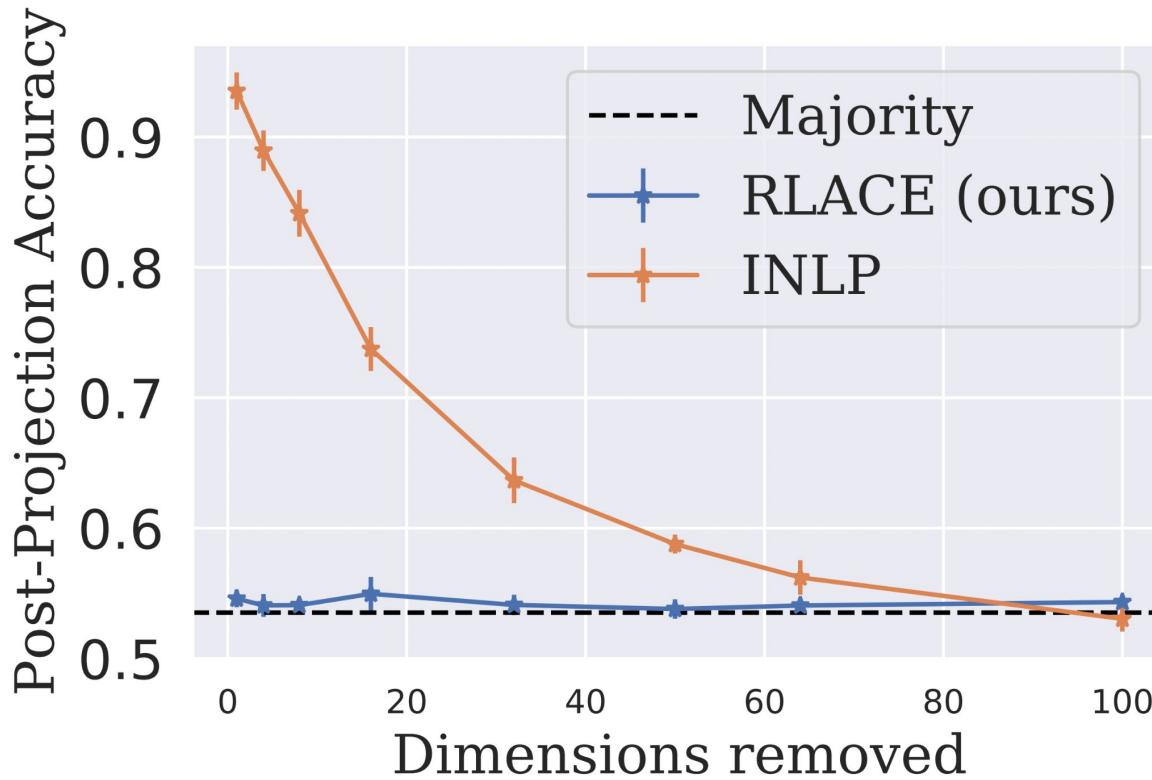
PCA: less clustering of representations by gender



Comparison with INLP - BERT (bios data)



Comparison with INLP - BERT (bios data)



Additional results in the paper.

Application on Images

Original

Application on Images

Original

Smile

Application on Images

Conclusions

- We have formally defined the problem of removing linear “concept subspaces”

Conclusions

- We have formally defined the problem of removing linear “concept subspaces”
- We present analytical solutions in some cases, and provide a relaxation which works well for others.

Conclusions

- We have formally defined the problem of removing linear “concept subspaces”
- We present analytical solutions in some cases, and provide a relaxation which works well for others.
- High level conclusion: it's sometimes valuable to constrain our model (in contrast to the “more parameters is better” trend)

Thanks!

