

Random Forest Density Estimation

Hongwei Wen¹, Hanyuan Hang¹

Department of Applied Mathematics
University of Twente

June 20, 2022

Outline

1 Introduction

2 Main Algorithm

3 Theoretical Results

4 Experiments

Motivation

- **Task:**

Density estimation is one of the most imperative topics in unsupervised learning among machine learning community.

- **Popular Methods:**

Kernel density estimation (KDE): Lack of adaptivity.

Histogram density estimation (HDE): Low computational efficiency.

Tree-based methods: Boundary Discontinuity.

- **Random Forest Density Estimation (RFDE):**

Local adaptivity;

Alleviate boundary discontinuity;

High efficient partition.

Contributions

- We propose a tree-based density estimation algorithm called random forest density estimation (RFDE).
- From a learning theory point of view, we prove the fast convergence rates of RFDE with assumptions that the underlying density functions lie in the Hölder space.
- We are the first to explain the benefits of ensemble for density estimation from the perspective of the convergence rates.
- In experiments, we validate the theoretical results and evaluate our RFDE through comparisons on both synthetic and real data.

Outline

1 Introduction

2 Main Algorithm

3 Theoretical Results

4 Experiments

Random Tree Partition

Mid-point random tree partitions suggested by Biau (2012) and Breiman (2004).

- Each dimension has the equal probability $1/d$ to be chosen.
- The split is at the midpoint of the chosen dimension.

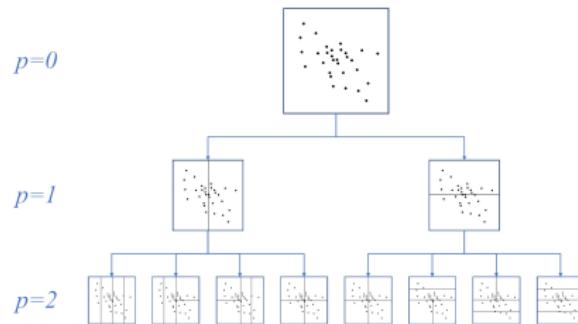


Figure: Random tree partitions with depth p for the dimension $d = 2$.

Note: In each partition with depth p , there are 2^p cells with equal volume 2^{-p} .

Algorithm

- For a certain partition with depth p , we denote $A_p(x)$ as the cell containing the point x .
- Based on the i.i.d observations $\{x_i\}_{i=1}^n \sim P$, the random tree density estimator is defined by

$$f_D^p(x) := \frac{D(A_p(x))}{\mu(A_p(x))} = \frac{n^{-1} \mathbf{1}\{x_i \in A_p(x)\}}{2^{-p}}$$

where $D(A_p(x)) \rightarrow P(X \in A_p(x))$ as $n \rightarrow \infty$.

- RFDE with T base learners is given by

$$f_{D,E}(x) = \frac{1}{T} \sum_{t=1}^T f_{D,t}^p(x).$$

Outline

1 Introduction

2 Main Algorithm

3 Theoretical Results

4 Experiments

Main Theoretical Results

- **Fast convergence rates.**

- ▶ Rate $O(n^{-\frac{1-4^{-\alpha}}{d \ln 2 + 1 - 4^{-\alpha}}})$ in $C^{0,\alpha}$ with high probability.

- **Ensemble estimators achieve the asymptotic smoothness.**

- ▶ Rate $O(n^{-\frac{1}{1+d \ln 2}})$ in $C^{1,\alpha}$ by choosing $T_n \gtrsim n^{\frac{1}{4+4d \ln 2}}$.

- **Benefits of ensemble.**

- ▶ Lower bound for random tree density estimators $O(n^{-\frac{1-4^{-\alpha}}{d \ln 2 + 1 - 4^{-\alpha}}})$ in $C^{1,\alpha}$.
 - ▶ When $d \geq 2$, the upper bound for RFDE is strictly smaller than this lower bound for tree estimators.

Outline

1 Introduction

2 Main Algorithm

3 Theoretical Results

4 Experiments

Empirical Comparison

Table 1. Average ANLL and MAE over simulated datasets

d	Method	Type I		Type II		Type III	
		ANLL	MAE	ANLL	MAE	ANLL	MAE
2	RFDE (Ours)	-0.57*	0.65	3.14*	1.64e-2*	1.97*	3.29e-2*
	KDE	-0.37	1.06	3.27	2.31e-2	2.14	5.32e-2
	HDE	-0.52	0.66	3.21	1.81e-2	2.01	3.82e-2
5	RFDE (Ours)	-1.18*	7.77*	8.17*	6.78e-4*	3.12*	0.09*
	KDE	-0.32	12.40	8.65	8.27e-4	3.86	0.15
	HDE	10.17	19.70	10.77	1.33e-3	6.09	0.17
7	RFDE (Ours)	-1.48*	30.60*	10.89*	5.54e-5*	3.96*	0.13*
	KDE	0.03	40.74	12.48	6.05e-5	5.16	0.18
	HDE	11.48	73.97	11.49	1.05e-4	9.88	0.20

* The best results are marked in **bold**. We use * to represent that the best method is significantly better than the other compared methods.

Table 2. Average ANLL over real data sets

Datasets	d'	RFDE	KDE	HDE	Datasets	d'	RFDE	KDE	HDE
Adult	2	-1.5226 (0.0113)	-0.7402 (0.0027)	-0.9838 (0.0143)	Diabetes	1	-0.8073 (0.0576)	-0.2627 (0.0111)	-0.6067 (0.0676)
	4	-1.8374 (0.0141)	-0.3075 (0.0032)	-0.7789 (0.0303)		3	-1.5378 (0.0953)	-0.4042 (0.0403)	-0.3142 (0.3422)
	8	-5.7832 (0.0557)	-2.2970 (0.0108)	—		4	-1.8387 (0.1433)	-0.8353 (0.0773)	2.9933 (0.6034)
	10	-6.6704 (0.0475)	-3.4372 (0.0110)	—		6	-2.3838 (0.1912)	-1.9693 (0.1550)	9.1732 (0.3902)
	2	-0.5836 (0.1796)	1.3155 (0.0234)	0.3898 (0.1494)		2	1.2659 (0.1142)	1.5435 (0.0183)	1.6649 (0.1968)
Australian	4	-5.2131 (0.3508)	0.8518 (0.0291)	-2.2163 (0.2507)	Credit	5	-1.3479 (0.2889)	1.4844 (0.0516)	1.3455 (0.5457)
	8	-3.6821 (0.3678)	0.6879 (0.1056)	—		8	2.1191 (0.2905)	3.0453 (0.1067)	—
	10	-1.8187 (0.3474)	0.4995 (0.1748)	—		11	3.1343 (0.3182)	3.5221 (0.2292)	—
	1	-0.0323 (0.2059)	0.6907 (0.0394)	0.3697 (0.1011)		1	0.5664 (0.0144)	0.5458 (0.0103)	0.5609 (0.0140)
	3	-3.3262 (0.5219)	0.1743 (0.1268)	1.3773 (0.3432)		3	-2.6793 (0.0818)	-0.9493 (0.0282)	-1.2716 (0.0594)
Breast-cancer	6	-7.5657 (0.9746)	-1.1397 (0.2788)	1.8392 (0.5542)	Abalone	4	-4.0743 (0.0619)	-2.6572 (0.0309)	-2.2145 (0.1534)
	8	-5.1952 (1.2260)	-2.1110 (0.3906)	—		6	-7.1922 (0.0722)	-6.4804 (0.0445)	0.3270 (0.3553)

* The best results are marked in **bold**, and the standard deviation is reported in the parenthesis. The results of HDE with $d' > 7$ is corrupted due to numerical problems.