MetAug: Contrastive Learning via Meta Feature Augmentation

Jiangmeng Li^{*,} Wenwen Qiang^{*}, Changwen Zheng, Bing Su, Hui Xiong

Contrastive Learning

• Contrastive loss guides the learned features to bring positive pairs together and push negative pairs farther apart.

$$\mathcal{L} = - \mathop{\mathbb{E}}_{X_S} \left[\log \frac{d(\{z^+\})}{d(\{z^+\}) + \sum_{k=1}^K d(\{z^-\}_k)} \right]$$

- X_S : a set of pairs randomly sampled from X
- $\{z^+\}$: a positive pair
- $\{z^{-}\}_{k}: K \text{ negative pairs, } k \in \{1, ..., K\}$
- $d(\cdot)$: a discriminating function

Motivation

- Contrastive learning heavily relies on informative features, or "hard" (positive or negative) features
 - Early works include informative features by applying complex data augmentations or adopting large batch size or memory bank
 - Recent works design elaborate sampling approaches to explore informative features
- Learning anti-collapsed feature augmentation

Meta feature augmentation generator

• Leverages second-derivative technique to update the parameters with respect to the improvement of the contrastive learning

Meta feature augmentation generator

Margin-injected regularization

• Injects a margin to encourage MAGs to generate anticollapsed augmented features

Optimization-Driven Unified Contrast

- Jointly contrasts all features in one gradient backpropagation step
- Emphasizes the weight to the similarity that deviates from the optimum and decrases the weight to the similarity having close proximity with the optimum

$$\mathcal{L}_{OUCL} = \left[\sum_{k^{-}=1}^{K^{-}} d(\{z^{-}\}_{k^{-}}) - \sum_{k^{+}=1}^{K^{+}} d(\{z^{+}\}_{k^{+}}) + \lambda\right]_{+} \qquad \qquad \mathcal{L}_{OUCL} = \frac{1}{\beta} \log \left\{ 1 + \sum_{k^{-}=1}^{K^{-}} \sum_{k^{+}=1}^{K^{+}} exp \left[\beta \left((d(\{z^{+}\}_{k^{+}}) - 1)^{2} + (d(\{z^{-}\}_{k^{-}}))^{2} - 2\gamma^{2} \right) \right] \right\} \\ \mathcal{L}_{OUCL} = \frac{1}{\beta} \log \left\{ 1 + \sum_{k^{-}=1}^{K^{-}} \sum_{k^{+}=1}^{K^{+}} exp \left[\beta \left(\Gamma^{-} (d(\{z^{-}\}_{k^{-}}) - \gamma^{-}) - \Gamma^{+}(d(\{z^{+}\}_{k^{+}}) - \gamma^{+}) \right) \right] \right\}$$

Evaluation

• Comparison with self-supervised learning methods

Model	Tiny ImageNet		STL-10		CIFAR10		CIFAR100	
Widdei	conv	fc	conv	fc	conv	fc	conv	fc
Fully supervised	36.60		68.70		75.39		42.27	
BiGAN	24.38	20.21	71.53	67.18	62.57	62.74	37.59	33.34
NAT	13.70	11.62	64.32	61.43	56.19	51.29	29.18	24.57
DIM	33.54	36.88	72.86	70.85	73.25	73.62	48.13	45.92
SplitBrain [‡]	32.95	33.24	71.55	63.05	77.56	76.80	51.74	47.02
SwAV	39.56 ± 0.2	38.87 ± 0.3	70.32 ± 0.4	71.40 ± 0.3	68.32 ± 0.2	65.20 ± 0.3	44.37 ± 0.3	40.85 ± 0.3
SimCLR	36.24 ± 0.2	39.83 ± 0.1	75.57 ± 0.3	77.15 ± 0.3	80.58 ± 0.2	80.07 ± 0.2	50.03 ± 0.2	49.82 ± 0.3
CMC^{\ddagger}	41.58 ± 0.1	40.11 ± 0.2	83.03	85.06	81.31 ± 0.2	83.28 ± 0.2	58.13 ± 0.2	56.72 ± 0.3
MoCo	35.90 ± 0.2	41.37 ± 0.2	77.50 ± 0.2	79.73 ± 0.3	76.37 ± 0.3	79.30 ± 0.2	51.04 ± 0.2	52.31 ± 0.2
BYOL	41.59 ± 0.2	41.90 ± 0.1	81.73 ± 0.3	81.57 ± 0.2	77.18 ± 0.2	80.01 ± 0.2	53.64 ± 0.2	53.78 ± 0.2
Barlow Twins	39.81 ± 0.3	40.34 ± 0.2	80.97 ± 0.3	81.43 ± 0.3	76.63 ± 0.3	78.49 ± 0.2	52.80 ± 0.2	52.95 ± 0.2
DACL	40.61 ± 0.2	41.26 ± 0.1	80.34 ± 0.2	80.01 ± 0.3	81.92 ± 0.2	80.87 ± 0.2	52.66 ± 0.2	52.08 ± 0.3
LooC	42.04 ± 0.1	41.93 ± 0.2	81.92 ± 0.2	82.60 ± 0.2	83.79 ± 0.2	82.05 ± 0.2	54.25 ± 0.2	54.09 ± 0.2
SimCLR + Debiased	38.79 ± 0.2	40.26 ± 0.2	77.09 ± 0.3	78.39 ± 0.2	80.89 ± 0.2	80.93 ± 0.2	51.38 ± 0.2	51.09 ± 0.2
SimCLR + Hard	40.05 ± 0.3	41.23 ± 0.2	79.86 ± 0.2	80.20 ± 0.2	82.13 ± 0.2	82.76 ± 0.1	52.69 ± 0.2	53.13 ± 0.2
$CMC^{\ddagger} + Debiased$	41.64 ± 0.2	41.36 ± 0.1	83.79 ± 0.3	84.20 ± 0.2	82.17 ± 0.2	83.72 ± 0.2	58.48 ± 0.2	57.16 ± 0.2
$CMC^{\ddagger} + Hard$	42.89 ± 0.2	42.01 ± 0.2	83.16 ± 0.3	85.15 ± 0.2	83.04 ± 0.2	86.22 ± 0.2	58.97 ± 0.3	59.13 ± 0.2
MetAug (only OUCL) [‡]	42.02 ± 0.1	42.14 ± 0.2	84.09 ± 0.2	84.72 ± 0.3	85.98 ± 0.2	87.13 ± 0.2	59.21 ± 0.2	58.73 ± 0.2
MetAug [‡]	$ 44.51 \pm 0.2 $	$\textbf{45.36} \pm \textbf{0.2}$	$ \textbf{85.41} \pm \textbf{0.3} $	85.62 ± 0.2	$ \textbf{87.87} \pm \textbf{0.2} $	$\textbf{88.12} \pm \textbf{0.2}$	59.97 ± 0.3	$\textbf{61.06} \pm \textbf{0.2}$

Evaluation

• Comparison under multiple batch sizes

• Comparisons with different data augmentations

set.			Data augme	ntations				Methods	
ID	horizontal	rotate	random	random	color	mixun	DACI	LooC	MetAug
	flip	Iotate	crop	grey	jitter	шлир	DACL	Looc	MetAug
1	\checkmark	\checkmark					-	80.73	87.05
2			\checkmark				-	81.16	87.53
3				\checkmark			-	80.70	86.81
4					\checkmark		-	81.64	87.79
5	\checkmark		\checkmark				-	82.05	88.12
6		\checkmark			\checkmark		-	82.16	88.01
7	\checkmark		\checkmark			\checkmark	80.87	82.21	88.22
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	82.09	83.17	88.65