Achieving Fairness at No Utility Cost via Data Reweighing with Influence

Peizhao Li and Hongfu Liu

Parity in Predictions for Different Groups

Group: gender, race, etc. Parity: true positive rate, error rate, etc.

Most Fair Algorithms Fairness 1 Utility

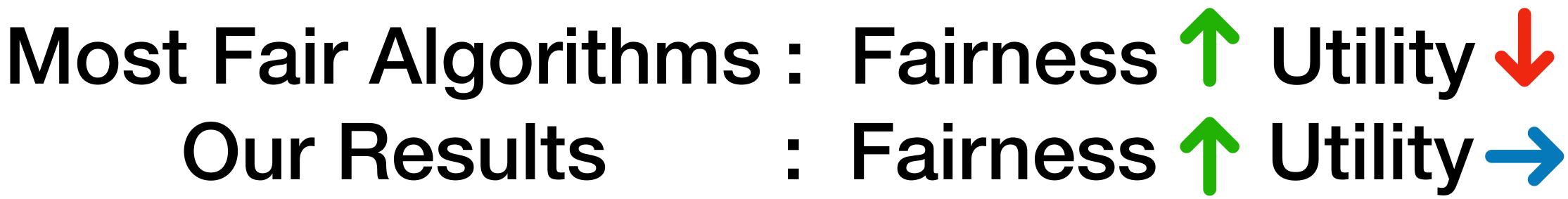
Our Results

Fairness 1 Utility ->

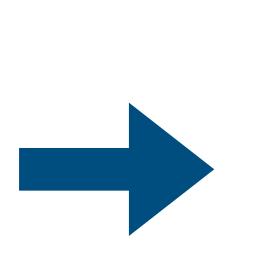
Our Results

Reweigh Training Data via Influence Function

Characterizations of an empirical influence function for detecting influential cases in regression, 1980

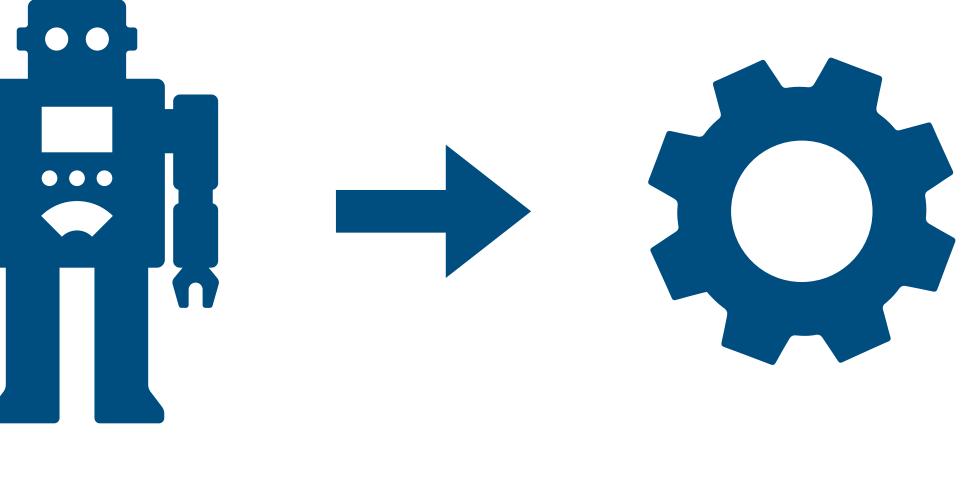


Training data



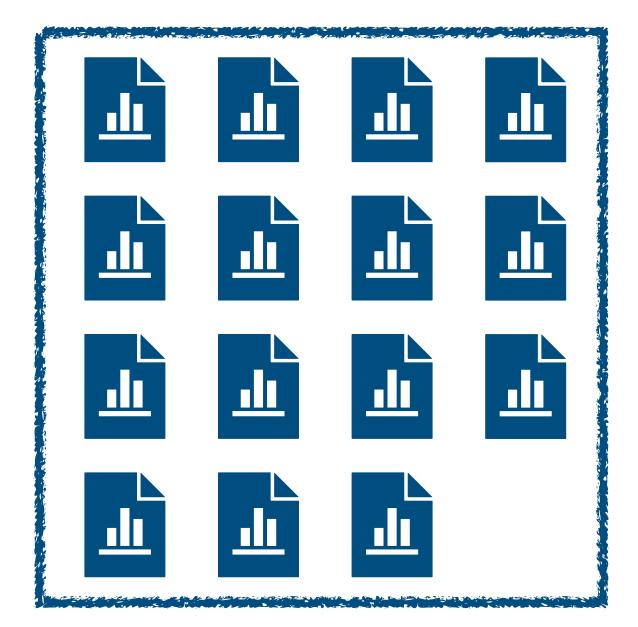
ML Model

Inference

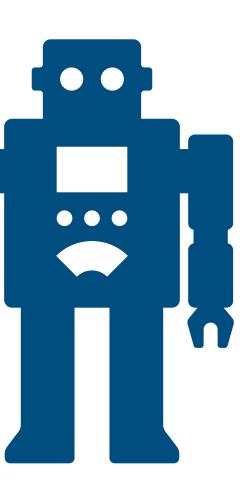


 $\hat{\theta}(\mathbf{1})$

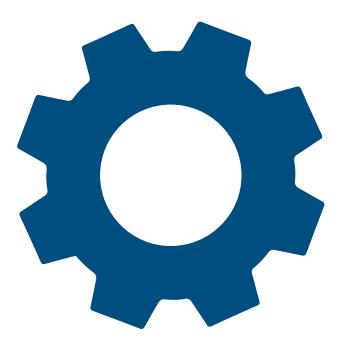
Training data



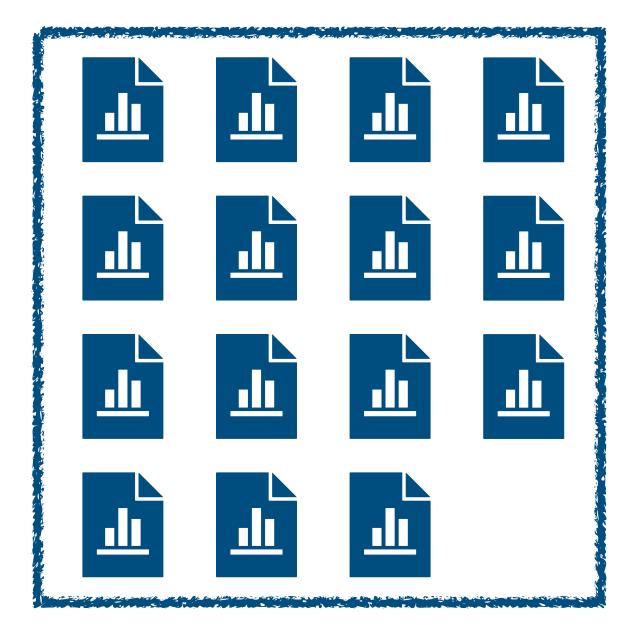
ML Model

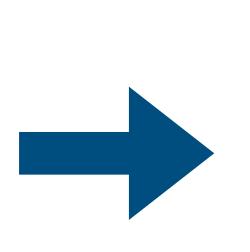


Inference



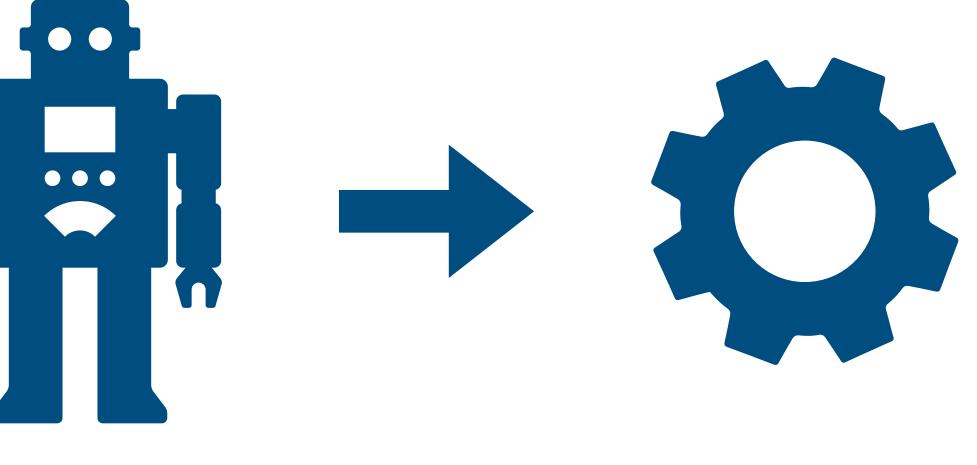
Training data





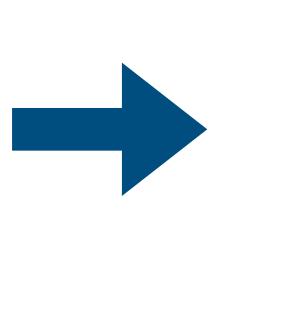
ML Model

Inference



(1 - w)

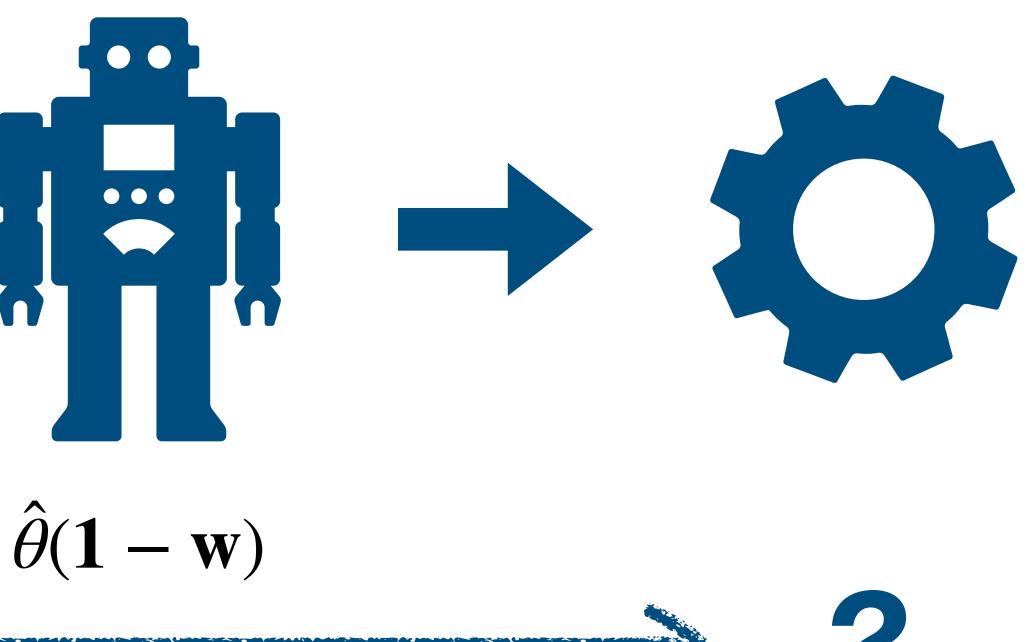
Training dataImage: Image: Imag



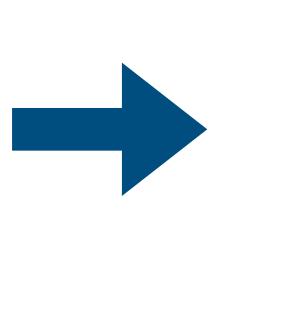
The second s

ML Model

Inference



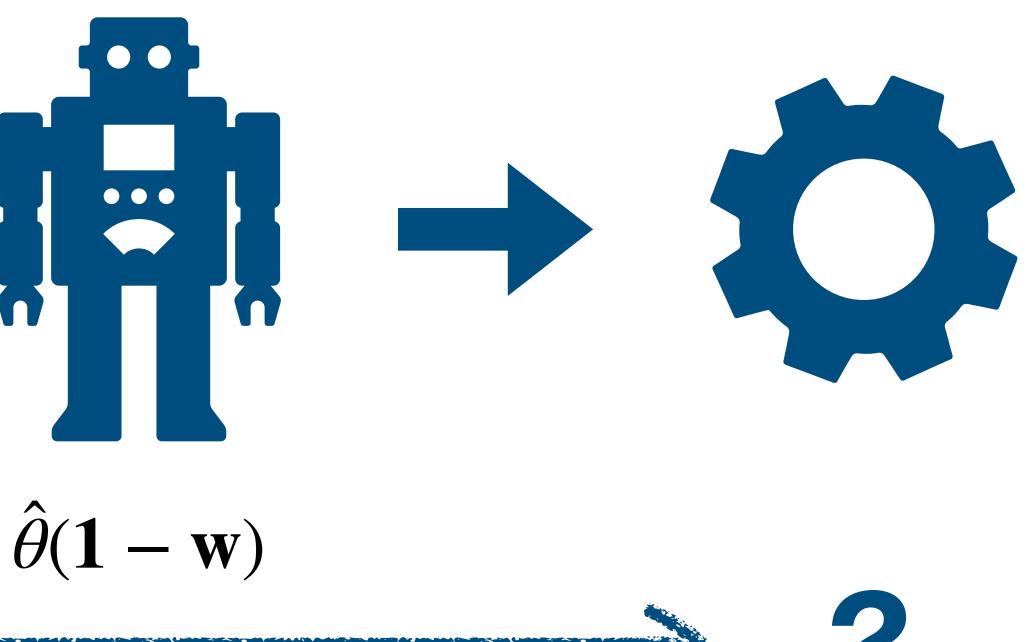
Training dataImage: Image: Imag



The second s

ML Model

Inference



 $\mathscr{I}(\mathbf{w}) = f(\hat{\theta}(\mathbf{1} - \mathbf{w}))$ $\approx \nabla_{\theta} f(\hat{\theta}(\mathbf{1}$

f : quantity with interest ℓ : loss function for model optimization

$$-\mathbf{w})) - f(\hat{\theta}(\mathbf{1}))$$
$$-))^{\mathsf{T}} \mathbf{H}_{\hat{\theta}(\mathbf{1})}^{-1} \nabla_{\theta} \mathscr{C}(x_i, y_i; \hat{\theta}(\mathbf{1}))$$

Two Objectives

Utility

Equal Opportunity

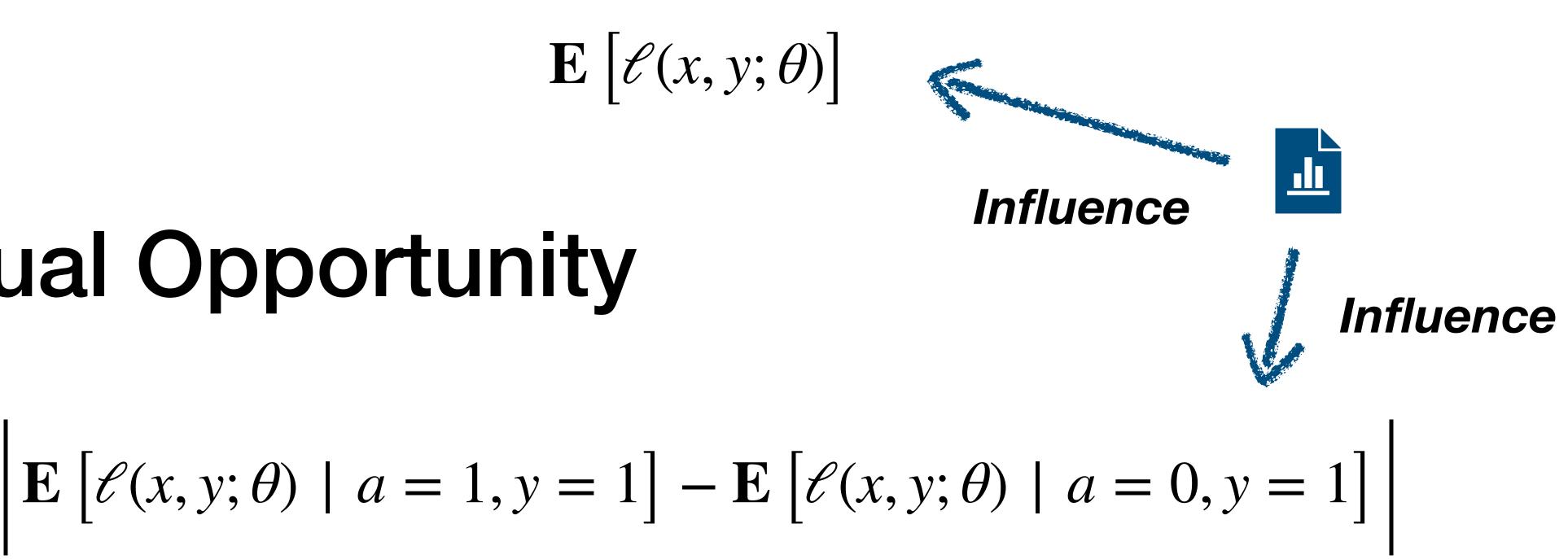
 $\left| \mathbf{E} \left[\ell(x, y; \theta) \mid a = 1, y = 1 \right] - \mathbf{E} \left[\ell(x, y; \theta) \mid a = 0, y = 1 \right] \right|$

 $\mathbf{E}\left[\ell(x,y;\theta)\right]$

Two Objectives

Utility

Equal Opportunity



Assumption

The gradient matrix of training samples at $\hat{\theta}(\mathbf{1}): \mathbf{G} \in \mathbb{R}^{N \times D}$ has rank D

Sufficient training samples with diversity, proper model dimension

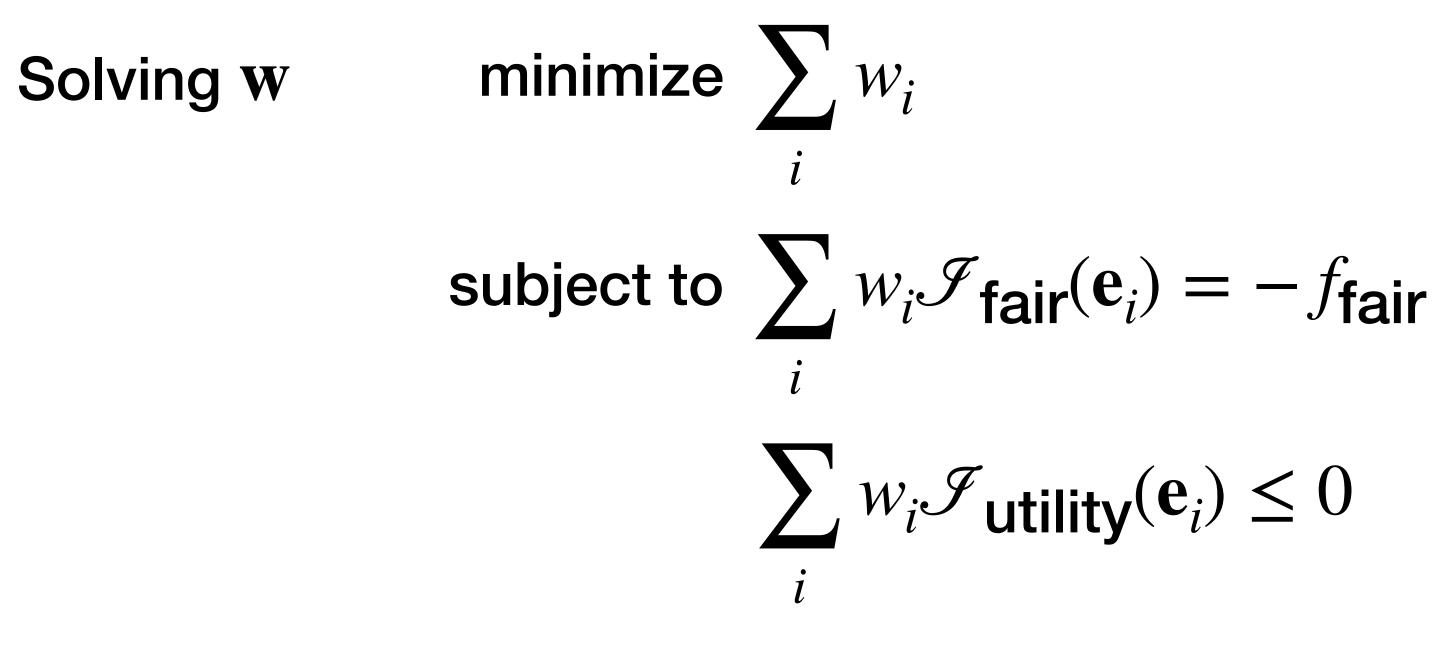
Assumption The gradient matrix of training samples at $\hat{\theta}(1)$: $\mathbf{G} \in \mathbb{R}^{N \times D}$ has rank DSufficient training samples with diversity, proper model dimension

If fairness is not in local optimum, $\nabla_{\theta} f_{fair}(\hat{\theta}(1))$ and $\nabla_{\theta} f_{\text{utility}}(\hat{\theta}(1))$ are linearly independent, then there are reweighing to *improve fairness* while at least keep utility not decrease.

Please see our paper for a formal version

Theorem

Reweighing Solution



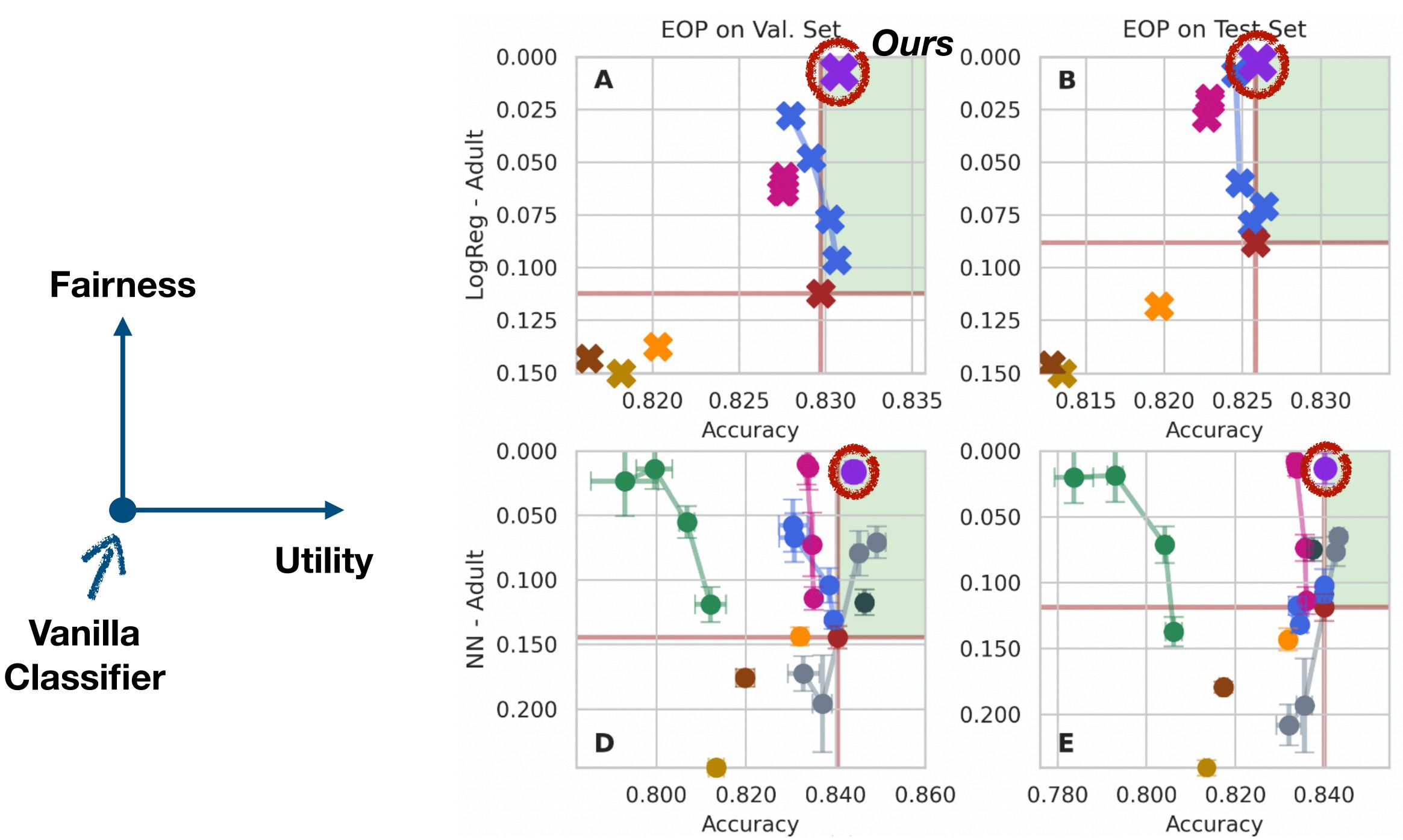
 $w_i \in [0,1]$

Reweighing Solution

Compensate for the group $\sum_{i} w_{i} \mathcal{I}_{utility}(\mathbf{e}_{i}) \leq \gamma(\min_{\mathbf{v}} \sum_{i} v_{i} \mathcal{I}_{utility}(\mathbf{e}_{i}))$ $w_i \in [0,1]$

Solving W

minimize $\sum w_i$ effect of Influence Function subject to $\sum w_i \mathscr{I}_{fair}(\mathbf{e}_i) \leq -(1-\beta)f_{fair}$



Summary

- 1. A pre-processing approach for Algorithmic Fairness;
- 2. Better fairness and nondecreasing utility.

For our paper

