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Motivation and Challenge

Frank-Wolfe Algorithm:

Projection-free

the optimal (1-1/e)-approximation

Hard to extend: varience reduction(Mokhtari et al.(2018)),
meta-action(Streeter and Golovin.(2008), Chen et al.(2018b))

Gradient Ascent/Descent Algorithm:

Fast convergence

1/2-approximation

Easy to extend in complicated settings, e.g., stochastic,
online, and delay feedback(Quanrud and Khashabi, 2015).
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In order to design efficient algorithm in the complex optimization
scenarios, we naturally want to know

Problems

How to boost the Gradient Ascent from 1/2-approximation to
(1-1/e)-approximation?
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Non-oblivious Function

For any monotone continuous γ-weakly DR-submodular function
f : X → R+, we consider this auxiliary function F whose gradient
at point x allocates different weights to the gradient ∇f (z ∗ x), i.e.,

∇F (x) =
∫ 1
0 w(z)∇f (z ∗ x)dz , (1)

where w(z) is the weight function in [0, 1].
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Lemma

For all x, y ∈ X , we have

⟨y − x,∇F (x)⟩ ≥
(
γ

∫ 1

0
w(z)dz

)
(f (y)− θ(w)f (x)) ,

where θ(w) = maxf ,x θ(w , f , x),

θ(w , f , x) =
w(1)+

∫ 1
0 (γw(z)−w ′(z)) f (z∗x)

f (x)
dz

γ
∫ 1
0 w(z)dz

and f (x) > 0.

The gradient ascent with small step size usually converges to the
stationary point. According to the Lemma, the stationary point of
auxiliary function F provides a 1/θ(w)-approximation guarantee.
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Factor-revealing Optimization Problem

In order to find the optimal w(z), we consider

min
w

θ(w) = min
w

max
f ,x

w(1) +
∫ 1
0 (γw(z)− w ′(z)) f (z∗x)f (x) dz

γ
∫ 1
0 w(z)dz

s.t. w(z) ≥ 0,

w(z) ∈ C 1[0, 1],

f (x) > 0,

∇f (x1) ≥ γ∇f (y1) ≥ 0,∀x1 ≤ y1 ∈ X .

(2)
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The optimal weight function

At first glance, the factor-revealing problem looks challenging to
solve. Fortunately, we could directly find the optimal solution,
which is provided in the following theorem.

Theorem

For factor-revealing problem, ŵ(z) = eγ(z−1) ∈ argminw θ(w) and
minw θ(w) = 1

1−e−γ .

Therefore, we take w(z) = eγ(z−1), the stationary point of F
provides a (1-e−γ)-approximation.
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Unbiased Gradient Estimate of Non-oblivious function

We introduce a new random variable Z where
Pr(Z ≤ z) =

∫ z
0

γeγ(u−1)

1−e−γ I (u ∈ [0, 1])du where I is the indicator
function. When the number z is sampled from r.v. Z, we consider
∇̃F (x) = 1−e−γ

γ ∇̃f (z ∗ x) as an estimator of ∇F (x).
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Boosting Gradient Ascent

Algorithm 1 Boosting Gradient Ascent

1: Set △t = 1 when t < T and △T = 1 + ln(τ) where τ =

max( 1γ ,
r2(C)L

c ).

2: Set △ =
∑T

t=1△t

3: Initialize any x1 ∈ X .
4: for t ∈ [T ] do
5: Compute ∇̃F (x t) according to the Unbiased Estimate
6: Set y t+1 = x t + ηt∇̃F (x t)
7: x t+1 = argminz∈C

∥∥z − y t+1

∥∥
8: end for
9: Choose a number l ∈ [T ] with the distribution P(l = t)=△t

△
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Boosting Gradient Ascent

Theorem

Assume C ∈ X is a bounded convex set and f is L-smooth, and the
gradient oracle ∇̃f (x) is unbiased with
E(∥∇̃f (x)−∇f (x)∥2|x) ≤ σ2. Let ηt =

1
σγ

√
t

diam(C)+Lγ
and c = O(1)

in Algorithm 1, then we have

E(f (x l)) ≥
(
1− e−γ − O

( 1

T

))
OPT − O

( 1√
T

)
,

where OPT = maxx∈C f (x).
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Online Boosting Gradient Ascent with Delay

Algorithm 2 Online Boosting Delayed Gradient Ascent

1: Initialize: any x1 ∈ C.
2: for t ∈ [T ] do
3: Play x t , then observe reward ft(x t)

4: Query ∇̃Ft(x t) =
1−e−γ

γ ∇̃ft(zt ∗ x t)

5: Receive feedback ∇̃Fs(x s), where s ∈ Ft

6: y t+1 = x t + η
∑

s∈Ft
∇̃Fs(x s)

7: x t+1 = argminz∈C
∥∥z − y t+1

∥∥
8: end for
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Online Boosting Gradient Ascent with Delay

Theorem

Assume C ⊆ X is a bounded convex set and each ft is monotone,
differentiable, and weakly DR-submodular with γ. Meanwhile, the
gradient oracle is unbiased E(∇̃ft(x)|x) = ∇ft(x) and
maxt∈[T ](∥∇̃Ft(x t)∥) = 1−e−γ

γ maxt∈[T ](∥∇̃ft(x t)∥) . Let
η = diam(C)

maxt∈[T ](∥∇̃Ft(x t)∥)
√
D

in Algorithm 2, then we have

(1− e−γ)max
x∈C

T∑
t=1

ft(x)− E(
T∑
t=1

ft(x t)) = O(
√
D),

where D =
∑T

i=1 dt and dt ∈ Z+ is a positive delay for the
information about ft .
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Special Case

Hassani(2017) introduced a special continuous DR-submodular
function fk coming from the multilinear extension of a set cover
function. Also, they also verified that x loc = (1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0)

is a local maximum with (1/2 + 1/(2k))-approximation to the
global maximum. Then, we compare our boosting gradient ascent
with the previous algorithms in this special case with Gaussian
noise.
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Special Case
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(a) Special Case (Local Max)
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(b) Special Case (Origin)
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Simulated Online Submodular QP
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(c) Online QP with Delays

0 20 40 60 80 100
Iteration Index

50

100

150

200

250

300

(1
-1

/e
)-r

eg
re

t

OGA(10)
OGA(50)
OBGA(10)
OBGA(50)
Meta-FW(500)
Meta-FW-VR(50)
Meta-FW-VR(500)

(d) Online QP without Delays
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Connections with Filmus&Ward(2014)

We consider a continuous DR-submodular function
F̄ : [0, 1]n → R+ from the multilinear relaxation of a submodular
set function f̄ : 2Ω → R+,i.e.,
F̄ (x) =

∑
S∈2Ω f̄ (S)

∏
i∈S xi

∏
j∈Ω\S(1− xj). If taking the same

boosting policy for F̄ , we could obtain a non-oblivious function
Ḡ (x) =

∫ 1
0

ez−1

z F̄ (z ∗ x)dz(Theorem 2). Also, Filmus&Ward(2014)
define a non-oblivious set function ḡ(A) =

∑
B⊂Am|A|−1,|B|−1f̄ (B)

for f̄ , where ma,b =
∫ 1
0

ep

e−1p
b(1− p)a−bdp. By ignoring a constant

factor, we could view Ḡ as the multilinear extension of ḡ .
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Thank You!!
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