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Non-oblivious Function and Results

Motivation and Challenge

Frank-Wolfe Algorithm:
@ Projection-free
@ the optimal (1-1/e)-approximation
@ Hard to extend: varience reduction(Mokhtari et al.(2018)),
meta-action(Streeter and Golovin.(2008), Chen et al.(2018b))

Gradient Ascent/Descent Algorithm:
e Fast convergence
@ 1/2-approximation

@ Easy to extend in complicated settings, e.g., stochastic,
online, and delay feedback(Quanrud and Khashabi, 2015).
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Non-oblivious Function and Results

In order to design efficient algorithm in the complex optimization
scenarios, we naturally want to know

Problems

How to boost the Gradient Ascent from 1/2-approximation to
(1-1/e)-approximation?
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Non-oblivious Function and Results

Non-oblivious Function

For any monotone continuous ~-weakly DR-submodular function
f: X — R, we consider this auxiliary function F whose gradient
at point x allocates different weights to the gradient Vf(z*x), i.e.,

VF(x) = fo w(z)VF(z xx)dz , (1)

where w(z) is the weight function in [0, 1].
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Non-oblivious Function and Results

Lemma

For all x,y € X, we have

== R > (7 [ w2z (1) — 610,

where O(w) = maxs x O(w, f,x),
W)+ [y (yw(2)-w'(2)) ez
9(W7 f7 x) — ,onl W(Z)dZ

and f(x) > 0.

The gradient ascent with small step size usually converges to the
stationary point. According to the Lemma, the stationary point of
auxiliary function F provides a 1/6(w)-approximation guarantee.
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Non-oblivious Function and Results

Factor-revealing Optimization Problem

In order to find the optimal w(z), we consider

| W)+ R ew(e) - w(2) ez
min 6(w) = min max 1
w wo fix v Jo w(z)dz
s.t. w(z) >0,
w(z) € C1[o,1],
f(x) >0,
Vif(x1) >~4Vf(y;) >0,¥x; <y, € X.
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Non-oblivious Function and Results

The optimal weight function

At first glance, the factor-revealing problem looks challenging to
solve. Fortunately, we could directly find the optimal solution,
which is provided in the following theorem.

Theorem

For factor-revealing problem, w(z) = e7*=1) € arg min,, (w) and

min,, O(w) = 1—2*7'

Therefore, we take w(z) = eV(z-1)

provides a (1-e~7)-approximation.

, the stationary point of F
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Non-oblivious Function and Results

Unbiased Gradient Estimate of Non-oblivious function

We introduce a new random variable Z where

Pr(Z<z)=[; Vlev(e —I(u € [0,1])du where / is the indicator
function. When the number z is sampled from r.v. Z, we consider
VF(x) = %%f(z % X) as an estimator of VF(x).
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Algorithms

Boosting Gradient Ascent

Algorithm 1 Boosting Gradient Ascent

1:

© e Na s en

Set At = 1 when t < T and At = 1+ In(7) where 7 =
max( 2, 2(C)L).
~ c
Set A=S"T A,
Initialize any x; € X.
for t € [T] do
Compute VF(x;) according to the Unbiased Estimate
Set y;11 = Xt + 0t VF(x¢)
Xt41 = argmingzec HZ - }’t+1H
end for
Choose a number / € [T] with the distribution P(/ = t)=
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Algorithms

Boosting Gradient Ascent

Theorem

AssumeC € X isa bounded convex set and f is L-smooth, and the
gradient oracle Vf (x) is unbiased with
E(||Vf(x) — VF(x)|?|x) < o2. Let n; = # and c = O(1)

diam(c)+ v
in Algorithm 1, then we have

E(f(x)) > (1 — T o(#))opr O<T>
where OPT = maxxec f(x).
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Algorithms

Online Boosting Gradient Ascent with Delay

Algorithm 2 Online Boosting Delayed Gradient Ascent

1: Initialize: any x; € C.
2: for t € [T] do

3 Play Xt, then observe reward f;(x¢)

4. Query VFt(xt) = l=e Vft(zt * Xt)

5 Receive feedback VF st) where s € F;
6: Y1 = xf+7725€]—‘t VFs(xs)
.

8:

Xt41 = argmingec HZ - .Vt+1H
end for
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Algorithms

Online Boosting Gradient Ascent with Delay

Theorem

Assume C C X is a bounded convex set and each f; is monotone,
differentiable, and weakly DR-submodular with v. Meanwhile, the
gradient oracle is unbiased E(Vf,(x)|x) = Vf(x) and

maxeer](|VFe(xe)l)) = =27 maxeerr) (IVA(xe)ll) - Let
diam(C)

n= e (OO VD in Algorithm 2, then we have
T T
I=e fi(x) —E f, — D
(1= mapd £l ~EQ flx) = O(VD),

where D = Z,T::L d: and d; € Z is a positive delay for the
information about f;.
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Numerical Experiments

Special Case

Hassani(2017) introduced a special continuous DR-submodular

function fi coming from the multilinear extension of a set cover

function. Also, they also verified that x,c = (1,1,...,1,0,...,0)
N——

k
is a local maximum with (1/2 + 1/(2k))-approximation to the
global maximum. Then, we compare our boosting gradient ascent
with the previous algorithms in this special case with Gaussian
noise.
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Numerical Experiments

Special Case
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Numerical Experiments

Simulated Online Submodular QP
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Connections with Filmus&Ward(2014)

Connections with Filmus&Ward(2014)

We consider a continuous DR-submodular function

F:[0,1]" — R from the multilinear relaxation of a submodular
set function f : 2% — R i.e.,

F(x) =Y seon F(S) [ics Xi [[jcq\s(1 —X)). If taking the same
boosting policy for F, we could obtain a non-oblivious function
G(x) = 01 ezz_l F(z * x)dz(Theorem 2). Also, Filmus&Ward(2014)

define a non-oblivious set function g(A) =3 g 4 m|A|,1’|B|,1f(B)

for f, where myp = fl eeplp — p)®~Pdp. By ignoring a constant
factor, we could view G as the multilinear extension of g.
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Connections with Filmus&Ward(2014)
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Connections with Filmus&Ward(2014)
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