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• Conformal prediction identifies a small set of promising output candidates.


• This set is guaranteed to contain the correct answer with high probability.

Confident set-valued predictions
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Conformal prediction framework

• Given  exchangeable examples  and a desired significance level , for a new 
input , return a set of predictions .


• A predictor is valid if  covers the correct label  w.p. at least : 
 

n (Xi, Yi) ∈ 𝒳 × 𝒴 ϵ
Xn+1 Cϵ(Xn+1) ⊆ 𝒴

Cϵ(Xn+1) Yn+1 1 − ϵ
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ℙ (Yn+1 ∈ Cϵ(Xn+1)) ≥ 1 − ϵ

{Golden retriever,  Labrador}



The catch: guaranteed coverage doesn’t come for free

• A classifier is only efficient if the output set is small, .


• To meet the desired coverage, output sets may be forced to include false positives that 
can’t be otherwise ruled out (with high confidence).


• This is problematic if having too many false positives has substantial cost.

𝔼[ |Cϵ(X ) | ] ≪ |𝒴 |
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Our goal: Can we trade guarantees on coverage for guarantees on false positives?

- Controlling accuracy depends on how hard the task is—hard tasks have low efficiency.


- Can we at least guarantee actionable predictions with low amounts of noise? 



Conformal prediction sets with limited false positives

• Proposal: change the setting to a constrained optimization problem.


• We want to maximize accuracy, but respect a false positive budget.


• Work in a generalized multi-label setting where input  is associated with a true positive 
set , where  is a set containing any number of correct labels (or none!).

X ∈ 𝒳
Z ⊆ 𝒴 Z
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Control in probability:

Control in expectation:



Application to experimental design (in-silico screening)
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• In-silico screening uses computational tools to identify drugs with desired properties.


• For a given property, many such drugs may exist, or none.


• Any candidate that is flagged via in-silico screening must be validated experimentally. 


• Limiting false positives is critical when balancing an experimental budget. 



An oracle set predictor

• Imagine an oracle with access to , the true conditional distribution of .


• This would be able to exactly maximize our goal: 
 
 
 
 
 
 

• But of course, this isn’t practical (as we don’t know ).

PZ∣Y Z ∣ X

PZ∣X

7



A calibrated approximate set predictor

• Using training data, we learn a model to directly predict the # FP in a candidate set .


• We first greedily consider a subset of candidate sets that are formed by individually ranking 
labels  using some auxiliary model, such as a model of .


• As we consider each progressively larger set (top 1, top 2, …),  we try to directly predict the 
number of false positives (like a confidence score!) using a DeepSet NN.


• To maximize coverage of true positives, we take the largest candidate set whose predicted FP 
score is below a threshold that we calibrate to guarantee our desired type of FP control. 
 

S ∣ X = x

y ∈ 𝒴 pθ(y ∈ Z ∣ x)
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• We show that our calibration procedure can be used to guarantee false positive control.


• Empirically, we also show that we can still achieve high true positive rates with low # FPs.


• Our DeepSet model is effective, and leads to both better conditional error and higher TPR. 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Overview of results

Control in Probability (ChEMBL)
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• Conformal prediction grants theoretical coverage guarantees. 


• But naive application of conformal prediction can sometimes yield disappointing results in 
practice, if the output sets are simply too large to know what to do with!


• Our method (1) offers control over the number of false positives, (2) still empirically achieves 
strong true discovery rates in most cases, and (3) is simple to calibrate and implement. 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Summary

Questions?

Come talk to us at our poster!


