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Research Question:
Can we achieve effective cooperation by learning about the reward
function from interactions with the human partner?

Insight:

Not only can we achieve effective cooperation, but we can infer the
reward function more precisely and with fewer samples when
interacting with a human expert compared to traditional IRL.
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Learner commits to policy 7} to which the expert responds

I

Learner chooses environment 7.1 in which the expert acts

This gives us a way to interpret the expert’s actions:

expert's response 72 (1) = expert policy 72 in (S, A2, 71, R, )

We essentially get to observe the expert in different environments,
environments that we (the learner) design.
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Experimental:

» |RL with interactions is more sample-efficient and precise

—— Interactive IRL via Linear Programming " —— Bayesian Interactive IRL
—— Max-Margin IRL in Fixed Environment —— Bayesian IRL in Fixed Environment
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