

Auxiliary Learning with Joint Task and Data Scheduling

Hong Chen¹ Xin Wang^{1,2} Chaoyu Guan¹ Yue Liu¹ Wenwu Zhu¹
Department of Computer Science and Technology, Tsinghua University¹
THU-Bosch JCML center, Tsinghua University²

Presentation Outline

- **≻**Background
- > Method
- **≻**Results
- **≻**Conclusion

Background

- >Auxiliary Learning
 - ➤One primary task, several auxiliary tasks to help the primary task
 - ➤ Most widely adopted way :
 - ➤ Combine different auxiliary losses in a linear way
 - ➤ Tune the weights to avoid negative transfer

$$\sum_{i=0}^{n} w_i L_i$$

 $\bigcup_{i=1}^{n}$

better performance on primary task

Auxiliary learning

Background

>Auxiliary Learning

Not only auxiliary task, but also each data sample within each auxiliary task should be considered

Target task

Auxiliary task

➤ Beneficial information of samples are different

➤ Noisy samples should be excluded

Data sample

What is needed?

$$\sum_{i=0}^n \sum_{j=1}^m w_{ij} l_{ij}$$

useful	not useful
useful	useful

Bird classification Beak detection

➤ Parameter-efficient Task-data Scheduler

Hypothesis 1. Data sample x_i^t in auxiliary task T_k is beneficial to the target task T_G , if task T_k is beneficial to the target task T_G and the pair $\left(x_i^t, y_{ik}^t\right)$ is beneficial to task T_k .

• **Hypothesis 2.** (x_i^t, y_{ik}^t) is beneficial to task T_k , if x_i^t contains useful features for T_k and y_{ik}^t is a correct label.

➤ Parameter-efficient Task-data Scheduler

- $w_{ij} = \sigma(\alpha_j) * \sigma(P_j^T c_{ij}) * \sigma(a_j l_{ij} + b_j)$
- (task importance + sample feature similarity with prototype + loss judgement)
- $\beta = \{\alpha, P, a, b\}$ O(dn) learnable parameters, d (feature size)<< m
- 1. Relations between tasks
 - \searrow Task relation vector α_i
- 2. Importance of each data sample to each auxiliary task
 - a. Whether data sample contains useful features \longrightarrow Task Prototype P_i
 - b. Whether the data label is correct \longrightarrow Adaptive Pass Filters a_i , b_i

➤ Joint TML and Scheduler Optimization

Bi-level Optimization:

$$\beta^* = \arg\min_{\beta} L_{dev}(\theta^*(\beta)),$$

$$s.t. \ \theta^* = \arg\min_{\beta} L_t(\theta, \beta).$$

Lower level: Optimize TML

Upper level: Optimize Scheduler

- ➤ Joint TML and Scheduler Optimization
 - **►** Lower Optimization

$$\nabla_{\theta} L_t(\theta, \beta) = \sum_{k \in U} \sum_{i=1}^m w_{ik} \nabla_{\theta} l_k(f_k(x_i^t), y_{ik}^t; \theta). \quad \text{weighted gradient}$$

➤Upper Optimization

$$\begin{split} &\nabla_{\beta}L_{dev}(\theta^{*}(\beta)) = \nabla_{\theta}L_{dev} \cdot \nabla_{\beta}\theta^{*} \\ &= -\nabla_{\theta}L_{dev} \cdot (\nabla_{\theta}^{2}L_{t})^{-1} \cdot \nabla_{\beta}\nabla_{\theta}L_{t}|_{(\beta,\theta^{*}(\beta))}. \\ &\approx &-\nabla_{\theta}L_{dev} \cdot \sum_{i=0}^{K} (I - \nabla_{\theta}^{2}L_{t})^{i} \cdot \nabla_{\beta}\nabla_{\theta}L_{t}. \end{split} \qquad \text{Neumann Series}$$

Results

- 1. CUB: bird classification as primary task, bird attribute classification as auxiliary tasks(1+312 tasks)
- 2. Pet, CF-10, CF-100: image classification as primary task, rotation prediction as auxiliary task(1+1 tasks)
- 3. ML-1M: rating prediction as primary task, ctr prediction as auxiliary task(1+1 tasks)

➤ Full Supervision

Table 2. Performance of different methods under the fully-supervised setting(CF-10, CF-100, ML-1M respectively represents the CIFAR10, CIFAR100, MovieLens-1M dataset).

Metric		RMSE			
Method	CUB	Pet	CF-10	CF-100	ML-1M
STL	73.86	61.45	71.60	74.14	0.9112
NAL	73.42	66.09	70.42	73.38	0.9101
Uncertainty	72.54	67.14	70.93	68.10	0.9103
GCS	73.70	66.30	70.64	74.14	0.9098
AuxL	74.32	66.30	71.23	73.80	0.9097
N-JTDS	71.38	67.28	70.57	75.06	0.9181
JTDS(ours)	77.04	70.01	72.59	75.68	0.9087

> Semi-Supervision

Table 3. Image classification accuracy(%) of different methods under the semi-supervised setting.

Method	CUB	Pet	CIFAR100
STL	38.35	30.21	55.16
NAL	48.15	38.00	57.52
Uncertainty	46.66	43.57	57.70
GCS	46.50	36.80	55.66
AuxL	50.19	36.42	55.94
N-JTDS	46.50	45.53	57.54
JTDS	51.21	53.49	58.56

- 1. Auxiliary tasks are more beneficial when target task lacks in labels
- 2. Joint task-data scheduling is effective

Results

➤ Robustness to label Noise

Figure 2. Accuracy of different models under different ratios of corrupted labels

Figure 3. Corrupted Sample Detection

Results

> Learned schedules

Figure 6. Target task filter function for supervised and corrupted settings.

Conclusion

- Propose task and data scheduling for auxiliary learning
- ➤ Propose an parameter-efficient task-data scheduler
- ➤ Give a complete solution accommodating various scenarios with efficiently approximating bi-level optimization

Thanks for listening!

My email: h-chen20@mails.tsinghua.edu.cn

